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• Penalized linear regression

Linear Regression
x̂(⌘) = argmin

x

⇢
1

2
||y �Ax||22 + J(x; ⌘)

�

Penalty
• Representative Penalty

J(x; ⌘ = �) = �||x||pp
`p•    norm

•          : convex  
•          : sparsity-inducing
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　            → p=1 is nice for variable selection (LASSO) 

p ≥ 1
p ≤ 1



• LASSO for 1-dimensional estimation

Statistical bias in LASSO
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• p<1 can reduce bias but… 
• Nonconvex → possible local minima  
• Noncontinuity → algorithmic instability

• Two representatives of PCNP 
• Smoothly Clipped Absolute Deviation (SCAD) penalty 
• Minimax Concave Penalty (MCP)

• Nonconvex, but estimator is continuous

Piecewise continuous nonconvex penalty (PCNP)

We hereafter focus only on SCAD
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SCAD estimator

J(✓; ⌘) =

8
>>><

>>>:

�|✓| (|✓|  �)

�✓2 � 2a�|✓|+ �2

2(a� 1)
(� < |✓|  a�)

(a+ 1)�2

2
(|✓| > a�)

.

• SCAD penalty ⌘ = {a,�}
a=5,λ=1

a=3,λ=1

a=2,λ=1
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• SCAD estimator

Continuous

No bias

• E.g. 1D estimator                     

(                  )
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Our Contributions
• Clarifying the emergence region of local minima 

• Phase transition (w. replica symmetry breaking) 
  
• Quantitative analysis of reconstruction performance 

• SCAD outperforms LASSO in weak noise region 

• Developing an approximate CV formula 
• Fast CV becomes possible 
• A method to avoid unstable parameter region
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Contents
1. Analytical performance analysis in simulated dataset 

2. Approximate CV formula 

3. Numerical experiments 
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Problem Setting
• Generative process

x0i ⇠ (1� ⇢0)�(x0i) + ⇢0N (0,�2
x)

Aµi ⇠ N (0, N�1)

• Quantities of interest

✏y =
1

2M
||y � ŷ||22

✏x =
1

2N
||x0 � x̂||22

ŷ = Ax̂: Output MSE

: Input MSE

TP, FP : True and False positive rates of support S = {i|x0i 6= 0}

Investigate typical values of these in high-dimensional limit
N ! 1, (↵ = M/N = O(1))

y = Ax0 +�

�i ⇠ N (0,�2
�)

all i.i.d.

crucial assumptions for analysis
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Stat. Mech. Formulation
• Hamiltonian, Boltzmann distribution, Partition function 

• Computing “free energy” or moment-generating function f(β)

H(x) =
1

2
||y �Ax||22 + J(x; ⌘)

P (x) =
1

Z
e��H(x)

Z =

Z
dxe��H(x)

��f(�) =
1

N
[logZ]y,A

• Any quantity of interest can be computed from f(β)

However, the average w.r.t. y and A is unperformable… 

Average w.r.t. y and A

←Replica Method (with replica symmetric assumption)

! �(x� x̂(⌘|y, A)), (� ! 1)

Solution of the original problem
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Equations to be solved

f(� ! 1) = Extr
⌦,⌦̃

(
Q� 2m+ ⇢0�2

x + ↵�2
�

2(1 + �/↵)
+mm̃� Q̃Q� �̃�

2
+

⇠(�; Q̃)

2

)

L(h; Q̃) ⌘ min
x

(
Q̃

2
x2 � hx+ J(x; ⌘)

)
.

Z
Dz(· · · ) ⌘

Z 1

�1

dzp
2⇡

exp

✓
�1

2
z2
◆
(· · · ),

• Replica symmetric (RS) free energy

⌦ = {Q,�,m} ⌦̃ = {Q̃, �̃, m̃} ⇠(�; Q̃) ⌘ 2

Z
Dz L(�z; Q̃),

x⇤(h; Q̃�1) = argmin
x

(
Q̃

2
x2 � hx+ J(x; ⌘)

)
.

✏x =
1

2

�
⇢0�

2
x � 2m+Q

�
,

✏y =
1

2
�̃.

TP =

Z
Dz

���x⇤(�+z; Q̃
�1)

���
0

(· · · ) =
X

�

(· · · )P (�)

�� =
p
�̃, �+ =

p
�̃+ m̃2�2

x.
FP =

Z
Dz

���x⇤(��z; Q̃
�1)

���
0

P (�) = (1� ⇢)�(� � ��) + ⇢�(� � �+)
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Stability and Multiple solutions

RS
RSB 

(Replica symmetry breaking)✏y✏y

SG transition

• RS solution is sometimes unstable 
• The instability can be signaled by a formula (not shown here) 

• Spin-glass transition or Almeida-Thouless (AT) instability  

Configuration Configuration
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Exponentially many (w.r.t. N)  
local minima exist.
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•           that gives minimum input MSE is in stable region. 
• For large noise, LASSO is sufficient.

(λ, a)
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Green line: Minimum of input MSE for each 

Green dot: Minimum of input MSE along the green line 

Blue line: AT line (Above the line, our analysis is stable)

λ



ROC curve

• Receiver operating characteristic (ROC) curve 
• Plot of TP against FP 

• A criterion:  
“Optimal point” on ROC curve is the minimum of 

R(η) = (TP(η) − 1)2 + (FP(η) − 0)2, η = {λ, a}

R(η)

• Here, we identify the optimal value of    at a fixed value of   , 
    and compare the value with that gives minimum of input MSE.

λ a

At the optimal point, the support recovery error is expected to be minimized.
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ROC curve
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• Minimum locations of input MSE and R are close. 
This property is absent in LASSO [Obuchi and Kabashima, JSTAT (2016)] 

• Input MSE is unknown in general settings, but relates to 
Cross-validation (CV) error, hence we may minimize CV error 
to determine optimal support.
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Verification of Theoretical Result

(N=1000, 10samples)

Analytically derived lines match to numerical simulation  

in RS phase.

RS phase

Input MSE ROC curve
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LOOCV and Linear Approx.

• Leave-one-out CV (LOOCV)

← Large cost!

d = x̂� x̂\µ• Approximation: Expand      w.r.t.

ℋ(x |D) ≡ {1
2 ∑

μ
(yμ − ∑

i

Aμixi)
2

+ J(x; η)}

x̂\μ = arg min
x

ℋ(x |D\μ)

ϵLOO(η) =
1

2M ∑
μ

(yμ − ∑
i

Aμi ̂x\μ
i (η))

2

Define:

ℋ

ℋ(x̂ |D) − ℋ(x̂\μ |D\μ) ∼ ∑
μ

dThμ(x̂)

x̂\μ ∼ x̂ − χ\μhμ(x̂), χ\μ =
∂x̂\μ

∂h
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Approximate CV formula
• Approximate CV formula:

✏LOO ⇡ 1

2M

MX

µ=1

⇥µ

�
yµ � a>

µ x̂
�2

⇥µ =

✓
1� (aµ)

>
SA

⇣
(A⇤SA)

> A⇤SA +
�
@2J(x̂SA ; ⌘)

�
SASA

⌘�1
(aµ)SA

◆�2

.

Computable only from x̂

cost function’s Hessian on support

SA: support

• Delicate points 
• Invariance of support between full and LOO solutions is 

assumed (approximately (exactly in N→∞) correct) 
• Regularity of cost function Hessian 

• Actually violated in RSB phase 
• Computational cost is O(|SA|3)
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Experimental Setting

x0i ⇠ (1� ⇢0)�(x0i) + ⇢0N (0,�2
x) all i.i.d.

Aµi ⇠ N (0, N�1)

y = Ax0 +�

�i ⇠ N (0,�2
�)

• Generative process: Identical to theoretical setting

• Optimization algorithm: Cyclic Coordinate Descent (CCD) 
• Coordinate-wise update optimizing the cost function 

• A technique: λ annealing 
• Pathwise optimization with gradually changing λ  

• Faster convergence 
• Robust solution even in RSB region
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Approx. CV: Sample dependence
SCAD parameter a = 3

α = 0.5, ρ0 = 0.2, σ2
Δ = 0.1, N = 100

Sample No.1 Sample No.4

• CV error fluctuates depending on sample. 
• Approximated CV error is valid in RS phase for both samples.
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(Error bar is for components of data.)



Approx. CV: Sample dependence
SCAD parameter a = 4

α = 0.5, ρ0 = 0.2, σ2
Δ = 0.1, N = 100

Sample No.1 Sample No.4

Sample dependence becomes moderate 

as increase SCAD parameter a.
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(Error bar is for components of data.)



“Phase diagram” for given data
• “Phase” is defined for the infinite set of samples that are 

    distributing according to a probability distribution. 

• In practical problems, 
• Appropriate parameter region for a given data is required. 
• In particular for finite size system, sample-dependency is large. 

• We propose a method to get “phase diagram” for given data. 
• In other words, we identify the parameter region where we should 

   rule out as candidates.
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Approx. CV: Instability detection for 
“phase diagram”

24/28

• Detect “irregular” datapoints  
   along the    path. 

• Find the maximum    value of 
   irregular datapoints. 

•     smaller than the maximum 
value is inappropriate in the 
sense that instability appears.

λ

λ

λ

SCAD parameter a = 3
α = 0.5, ρ0 = 0.2, σ2

Δ = 0.1, N = 100
Sample No.4

We use our approximate CV formula to detect “RSB” region.
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Blue line: AT line (RS-RSB transition) 

Black region: “RSB region” for sample No.4 

Green line: Minimum of CV error

Corresponding “phase diagram” for sample No.4

What happens in “RSB” region (black)?

Starting from 10 different initial condition  
without annealing, literal CV’s value fluctuates 
in the “RSB” region.



Application to SuperNovae data analysis
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http://heracles.astro.berkeley.edu/sndb/

Minimum of literal CV 

CV error for a=4

Minimum of CV in stable region

“Phase” boundary



Application to SuperNovae data analysis
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Sparsest within one-sigma rule: K=3  

   ←Identical solution to a Monte-Carlo method solving L0 problem 

                                                       (TO et al, 2016,2018)
Our method is consistent with L0 result  
              even though SCAD is more computationally reasonable

27/28

Number of parameters in modelCV error



Summary
• Theoretical analysis of SCAD estimator in linear regression 

• Emergence of local minima = Phase transition w. RSB 
• Analytical evidence of outperformance of SCAD to LASSO 

• Invention of an approximate CV formula 
• The scaling is O(N3) but still practical in a wide range of N 
• Approximate CV instability <-> Local minima or RSB 

• Instability detection in CV formula also signals RSB 
• Numerical results fully support the theoretical result 
• A MATLAB Package of approx. CV formula + CCD algorithm: 

https://github.com/T-Obuchi/SLRpackage_AcceleratedCV_matlab

• Future work 
• Characterization of the λ annealed solution path 
• Applications, different models (non-L2 cost function)

TO, AS, arXiv:1902.10375
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https://github.com/T-Obuchi/SLRpackage_AcceleratedCV_matlab

