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Second-order cone optimization problem (SOCP)

Linear optimization problem (LP)

maximize ¢'x

subjectto Ax=05b
x>0

is generalized to second-order cone optimization problem (SOCP)

maximize ¢'x
subjectto Ax=0b

xekK

where L = KM x ... x [C"r

K" ={(x1,X) ERx R :x; > ||x]]2}

In this slides, p = 1 for simplicity
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Algorithms for solving SOCP

Basically generarization of algorithms for solving LP

Using Euclidian Jordan algebra
® Interior-point method [Monteiro and Tsuchiya, 2000]
® Chubanov’s algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation
® Simplex method [Hayashi et al., 2016, Muramatsu, 2006]

® |P-Newton method
[Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]

Semi-infinite representation

maximize ¢! x

subjectto Ax=0b
(L,vHx >0,YveR™1: v, <1
(<= xecKk")
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LP-Newton method: Overview

LP-Newton method originally proposed for solving box-constrained LP

maximize c¢'x

subjectto Ax=0>b
I<x<u

by [Fujishige et al., 2009]

B
“LP" in “the LP-Newton method” means
® |ine and polytope
® rather than linear program
and “Newton method” means that for solving ?
nonlinear equation f(y) = b : L .
ol e W
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Optimal value of LP is endpoint of LN P

maximize c¢'x maximize vy
X XY

subject to Ax = b, |<=|subjectto c'x =1
I <x<u Ax=bl<x<u

maximize vy maximize vy
<= v = 7.8
subject to (v,b) € P subject to (y,8) € LNP

where

L:={(7,8) eR™"™: B = b}
P:={(,8)eR™™:c"x=~Ax=0,1<x<u}

Optimal value +* is bounded from above, i.e., v* < ¢ x, where

o Ju (g=0) . ;
XJ_{/J (Cj<0)(J—1,...,)
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Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

maximize -y
7.8

subjectto w:=(y,8)eLNP

B
projp(w()) c.f.. Newton method
projp(w 1) for f(v) = b
. 8
I@(k) .................... '.'," ....... V
B | Y
) - - :
D w0 ) /]
b G A
(k1) (K K v >
0 5 'y( +1) 'y( ) o} YA (k1) ()
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LP-Newton method

Algorithm 1 LP-Newton method for solving box-constrained LP

1: Set w(©® := (5(9)_b) for sufficiently large 7(9), e.g., (0 := ¢Tx

2: for k =0,1,... (until convergence)

3: Compute the orthogonal projection (v(¥), 8(K)) := projp(w(k)) of
the current point w(k) onto polytope P and find x(¥) satisfying
¢ x(k) = () Ax(k) = gtk | < x(K) <y

4 Compute the intersecting point w(k1) of the supporting hyperplane
H®) to P at projp(w(¥)) and line L

Theorem [Fujishige et al., 2009, Theorem 3.11] B
LP-Newton method solves LP in a finite # steps
Remark projp (wlk))
e Computation of the intersecting point w(k*1) L S S
is easy because w(k) — projp(w(k)) 1 Hk) b L ] e
e Computation of the projection is not trivial o SO !



Variants of LP-Newton method and their complexity

Literature Outer algo  Inner algo (projection)
[Fujishige et al., 2009] LP-Newton [Wolfe, 1976]
[Kitahara et al., 2013] LP-Newton [Wilhelmsen, 1976]

[Kitahara and Sukegawa, 2019] bisection [Wolfe, 1976]

Note
[Kitahara et al., 2013] solves
Overall complexity is roughly maximize ¢'x
subjectto Ax=b
# outer steps x complexity of inner algo x>0

. . Corresponding P is polyhedral cone
but still theoretically open because

® complexity of inner algo [Wolfe, 1976, Wilhelmsen, 1976] is unknown
® 4 outer LP-Newton steps is finite but unknown
® (# outer bisection steps is polynomial)

In practice, # outer LP-Newton step is small (< 5)
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How extend LP-Newton method to SOCP?

[Silvestri and Reinelt, 2017] applied the LP-Newton method to
conic-box-constrained SOCP

maximize ¢ 'x

x maximize vy
subjectto Ax=0b = 7.8 .
| <x<u subject to (v,8) € LNP

where

a<b<—b—-ack
P ={(7,B) eR"™:c'x=7,Ax= 8,1 X x < u}

P* is not polyhedral © Computation of projp*(w(k)) is more challenging

For computing projp.(w(k)), [Silvestri and Reinelt, 2017] proposed
Frank—Wolfe-type algorithm as inner algorithm < Time consuming?

Our approach: Polyhedral approximation
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Polyhedral approximation via semi-infinite representation

maximize ¢'x maximize ¢! x
X X
subject to Ax = b |<=|subjectto Ax=b
xek (1,v)x >0,Yv € V*
where

VEi={v e R ||vp < 1}

Of course, |V*| = 00

Finite approximation, i.e., LP relaxation using V C V* such that |V| < oo

maximize ¢'x _
X maximize -y
subjectto Ax=0>b — 7.8
(L,v )x >0,¥v eV subject to (v,B8) € LNP
where

P:={(7,8) eR"™:c"x=~,Ax=3,(1, VT)X(k) >0,Vv eV}

LP-Newton method (for LP) can be applied to the resulting problem
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Adaptive LP-Newton method
Idea: Apply LP-Newton method (for LP) adding cuts adaptively

Algorithm 2 Adaptive LP-Newton method for box- i LP SOCP

1: Generate initial finite approximation V(%) appropriately

2: Set w(® := (49, b) for sufficiently large (), M

3: for k =0,1,... (until convergence)

4: Compute the orthogonal projection (7K, 3K)) = projpu (w(k)) of
the current point w(¥) onto polytope P¥) corresponding to V/(K)
and find x(K) corresponding to (y(k), 3(K)

5: Compute the intersecting point w(kt1) of the supporting hyperplane
H®) to P at projpy (w(k) and line L

6 Compute v(K) € argmin, ¢\« (1, v )x*)

7: if (1,v")x() <0 then > Otherwise, x(K) € K

8: Update V(1) .= v {y(k)
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Global convergence

maximize ¢'x

subjectto Ax=b,x € K
Assumption
The optimal set of SOCP (1) is nonempty and compact

Theorem

Let {x(k)} be a sequence generated by the adaptive LP-Newton
method. Under the assumption above, any accumuration point of
{x(K)} is an optimal solution of SOCP (1)

Remark
The assumption above is satisfied if the dual problem

minimize by
subjectto A'y —ce K

of SOCP (1) has an optimal solution and interior feasible solutions
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Numerical experiments: Setting

® Performance of our adaptive LP-Newton method

® Comparison with an interiot-point method

Experiment environment

® CentOS 6.10 with 8 Intel Xeon CPUs (3.60 GHz) and 32 GB RAM
e MATLAB R2018a (9.4.0.813654)

Instances
Randomly generated well-conditioned instances

Initial finite approximation of V* = {v € R : ||v|, < 1}

VO .= (te;eR":j=1,2...,n-1}
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Numerical experiments: Setting (cont'd)

Computation of proj ) (w(¥))
Solve the following QP by using 1sqlin

L c’ MONE
mlnlxmlze H < A ) X — (IB(k)>

subject to (1,v')x > 0,Yv € V(¥

Stopping criteria
If x(K) satisfies the following criteria,

max{ || Ax®) — b||, [|x40))| — x}®) L xe ) — x20y < 1074

where x’ € R™ denotes the i-th block of x partitioned along the
Cartesian structure of K = K™ x ... K", ie, x = (x,...,xP)
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# of variable vs # iteration & comput. time

# iteration

® m = # linear constr., n = # variables, p = # blocks

® Set ny =---=np, = n/p, where (ny, ..

® Average of 10 trials is shown

m = 100
300
——p=n
—-p=n/2
250 p=n/5 |1
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# of linear constraints vs # iteration & comput. time

# iteration

® m = # linear constr., n = # variables, p = # blocks

® Set ny =---=np, = n/p, where (ny, ..

® Average of 10 trials is shown
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Comparison with interior-point method

® Used SDPT3 with default setting

® Average of 10 trials is shown

# dimensions time [sec.]

m n (n,n2,...,np) ALPN SDPT3
1400 1500 (3,3,...,3) 177.3 366.6
1700 1800 (3,3,...,3) 260.4 638.4
2000 2100 (3,3,...,3) 363.4 970.0
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Concluding remarks
Contribution
® Proposed adaptive LP-Newton method for solving SOCP

® Used polyhedral approximation of SOC via semi-infinite representation

® Quickly solved instances with “low-dim” SOCs and many linear constr

Future work

e Efficient computation of the projection
e Complexity analysis

Preprint

[4 T. Okuno and M. Tanaka:

Extension of the LP-Newton method to SOCPs via semi-infinite
representation,

arXiv:1902.01004.

Thank you for your attention
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