Adaptive LP-Newton method for SOCP

Takayuki Okuno¹ Mirai Tanaka^{1,2}

¹RIKEN, ²ISM

March 29th, 2018
The 4th ISM-ZIB-IMI MODAL Workshop on Mathematical
Optimization and Data Analysis

T. Okuno and M. Tanaka:

Extension of the LP-Newton method to SOCPs via semi-infinite representation,

arXiv:1902.01004.

Table of contents

- 1. SOCP: Second-order cone optimization problem
- 2. LP-Newton method for LP
- 3. Extension of LP-Newton method to SOCP
- 4. Numerical results
- 5. Concluding remarks

Second-order cone optimization problem (SOCP)

Linear optimization problem (LP)

maximize
$$c^{\top}x$$
 subject to $Ax = b$ $x \ge 0$

is generalized to second-order cone optimization problem (SOCP)

maximize
$$c^{\top}x$$
 subject to $Ax = b$ $x \in \mathcal{K}$

where
$$\mathcal{K} = \mathcal{K}^{n_1} imes \cdots imes \mathcal{K}^{n_p}$$

$$\mathcal{K}^n = \{(x_1, \bar{\boldsymbol{x}}) \in \mathbb{R} \times \mathbb{R}^{n-1} : x_1 \ge ||\bar{\boldsymbol{x}}||_2\}$$

In this slides, p = 1 for simplicity

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP

Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method [Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]

Semi-infinite representation

```
maximize \boldsymbol{c}^{\top} \boldsymbol{x} subject to \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} (1, \boldsymbol{v}^{\top}) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in \mathbb{R}^{n-1} : \|\boldsymbol{v}\|_2 \leq 1 (\Longleftrightarrow \boldsymbol{x} \in \mathcal{K}^n)
```

I P-Newton method: Overview

LP-Newton method originally proposed for solving box-constrained LP

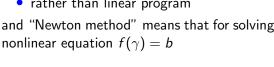
maximize
$$c^{\top}x$$
 subject to $Ax = b$ $I \le x \le u$

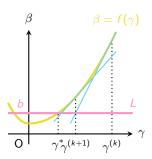
by [Fujishige et al., 2009]

"LP" in "the LP-Newton method" means

- line and polytope
- rather than linear program

and "Newton method" means that for solving





Optimal value of LP is endpoint of $L \cap P$

where

$$L := \{ (\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m} : \boldsymbol{\beta} = \boldsymbol{b} \}$$

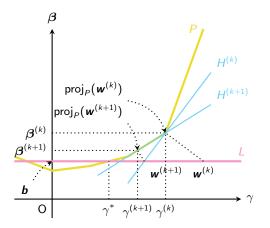
$$P := \{ (\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m} : \boldsymbol{c}^{\top} \boldsymbol{x} = \gamma, \boldsymbol{A} \boldsymbol{x} = \boldsymbol{\beta}, \boldsymbol{I} \leq \boldsymbol{x} \leq \boldsymbol{u} \}$$

Optimal value γ^* is bounded from above, i.e., $\gamma^* \leq c^\top \bar{x}$, where

$$ar{x}_j := egin{cases} u_j & (c_j \geq 0) \ l_j & (c_j < 0) \end{cases} (j = 1, \ldots, n)$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP



c.f.: Newton method for $f(\gamma) = b$ $\beta \qquad \beta = f(\gamma)$

LP-Newton method

Algorithm 1 LP-Newton method for solving box-constrained LP

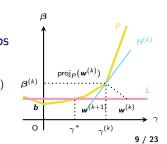
- 1: Set $\mathbf{w}^{(0)} := (\gamma^{(0)}, \mathbf{b})$ for sufficiently large $\gamma^{(0)}$, e.g., $\gamma^{(0)} := \mathbf{c}^{\top} \bar{\mathbf{x}}$
- 2: **for** $k = 0, 1, \dots$ (until convergence)
- 3: Compute the orthogonal projection $(\gamma^{(k)}, \beta^{(k)}) := \operatorname{proj}_P(\boldsymbol{w}^{(k)})$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope P and find $\boldsymbol{x}^{(k)}$ satisfying $\boldsymbol{c}^{\top}\boldsymbol{x}^{(k)} = \gamma^{(k)}, \boldsymbol{A}\boldsymbol{x}^{(k)} = \beta^{(k)}, \boldsymbol{I} \leq \boldsymbol{x}^{(k)} \leq \boldsymbol{u}$
- 4: Compute the intersecting point $\mathbf{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to P at $\operatorname{proj}_P(\mathbf{w}^{(k)})$ and line L

Theorem [Fujishige et al., 2009, Theorem 3.11]

LP-Newton method solves LP in a finite # steps

Remark

- Computation of the intersecting point $\mathbf{w}^{(k+1)}$ is easy because $\mathbf{w}^{(k)} \text{proj}_{\mathcal{D}}(\mathbf{w}^{(k)}) \perp \mathcal{H}^{(k)}$
- Computation of the projection is not trivial



Variants of LP-Newton method and their complexity

Literature	Outer algo	Inner algo (projection)
[Fujishige et al., 2009] [Kitahara et al., 2013] [Kitahara and Sukegawa, 2019]	LP-Newton LP-Newton bisection	

Note

[Kitahara et al., 2013] solves

outer steps × complexity of inner algo

maximize $c^{\top}x$ subject to Ax = b x > 0

but still theoretically open because

Overall complexity is roughly

- Corresponding P is polyhedral cone
- complexity of inner algo [Wolfe, 1976, Wilhelmsen, 1976] is unknown
- # outer LP-Newton steps is finite but unknown
- (# outer bisection steps is polynomial)

In practice, # outer LP-Newton step is small (\lesssim 5)

How extend LP-Newton method to SOCP?

[Silvestri and Reinelt, 2017] applied the LP-Newton method to conic-box-constrained SOCP

where

$$\mathbf{a} \leq \mathbf{b} \Longleftrightarrow \mathbf{b} - \mathbf{a} \in \mathcal{K}$$

$$P^* := \{ (\gamma, \beta) \in \mathbb{R}^{1+m} : \mathbf{c}^\top \mathbf{x} = \gamma, \mathbf{A} \mathbf{x} = \beta, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \}$$

 P^* is not polyhedral \hookrightarrow Computation of $\operatorname{proj}_{P^*}(\boldsymbol{w}^{(k)})$ is more challenging

For computing $\operatorname{proj}_{P^*}(\boldsymbol{w}^{(k)})$, [Silvestri and Reinelt, 2017] proposed Frank–Wolfe-type algorithm as inner algorithm \hookrightarrow Time consuming?

Our approach: Polyhedral approximation

Polyhedral approximation via semi-infinite representation

where

$$V^* := \{ \mathbf{v} \in \mathbb{R}^{n-1} : \|\mathbf{v}\|_2 \le 1 \}$$

Of course,
$$|V^*| = \infty$$

Finite approximation, i.e., LP relaxation using $V \subset V^*$ such that $|V| < \infty$

$$\begin{array}{lll} \underset{\boldsymbol{x}}{\text{maximize}} & \boldsymbol{c}^{\top}\boldsymbol{x} \\ \text{subject to} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \\ & (1, \boldsymbol{v}^{\top})\boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in \boldsymbol{V} \end{array} \\ \iff \begin{array}{ll} \underset{\gamma, \beta}{\text{maximize}} & \gamma \\ \text{subject to} & (\gamma, \beta) \in L \cap P \end{array}$$

where

$$P := \{(\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m} : \boldsymbol{c}^{\top} \boldsymbol{x} = \gamma, \boldsymbol{A} \boldsymbol{x} = \boldsymbol{\beta}, (1, \boldsymbol{v}^{\top}) \boldsymbol{x}^{(k)} > 0, \forall \boldsymbol{v} \in \boldsymbol{V}\}$$

LP-Newton method (for LP) can be applied to the resulting problem

Adaptive LP-Newton method

Idea: Apply LP-Newton method (for LP) adding cuts adaptively

Algorithm 2 Adaptive LP-Newton method for box-constrained LP SOCP

- 1: Generate initial finite approximation $V^{(0)}$ appropriately
- 2: Set $\mathbf{w}^{(0)} := (\gamma^{(0)}, \mathbf{b})$ for sufficiently large $\gamma^{(0)}$, e.g. $\gamma^{(0)} := \mathbf{c}^{\top} \bar{\mathbf{x}}$
- 3: **for** $k = 0, 1, \dots$ (until convergence)
- 4: Compute the orthogonal projection $(\gamma^{(k)}, \beta^{(k)}) = \operatorname{proj}_{P^{(k)}}(\boldsymbol{w}^{(k)})$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope $P^{(k)}$ corresponding to $V^{(k)}$ and find $\boldsymbol{x}^{(k)}$ corresponding to $(\gamma^{(k)}, \beta^{(k)})$
- 5: Compute the intersecting point $\mathbf{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to $P^{(k)}$ at $\operatorname{proj}_{P^{(k)}}(\mathbf{w}^{(k)})$ and line L
- 6: Compute $\mathbf{v}^{(k)} \in \operatorname{argmin}_{\mathbf{v} \in V^*} (1, \mathbf{v}^\top) \mathbf{x}^{(k)}$
- 7: **if** $(1, \mathbf{v}^{\top})\mathbf{x}^{(k)} < 0$ then

 \triangleright Otherwise, $\mathbf{x}^{(k)} \in \mathcal{K}$

8: Update $V^{(k+1)} := V^{(k)} \cup \{ \mathbf{v}^{(k)} \}$

Global convergence

maximize
$$c^{\top}x$$

subject to $Ax = b, x \in \mathcal{K}$ (1)

Assumption

The optimal set of SOCP (1) is nonempty and compact

Theorem

Let $\{x^{(k)}\}$ be a sequence generated by the adaptive LP-Newton method. Under the assumption above, any accumuration point of $\{x^{(k)}\}$ is an optimal solution of SOCP (1)

Remark

The assumption above is satisfied if the dual problem

minimize $\boldsymbol{b}^{\top} \boldsymbol{y}$ subject to $\boldsymbol{A}^{\top} \boldsymbol{y} - \boldsymbol{c} \in \mathcal{K}$

of SOCP (1) has an optimal solution and interior feasible solutions

Numerical experiments: Setting

- Performance of our adaptive LP-Newton method
- Comparison with an interiot-point method

Experiment environment

- CentOS 6.10 with 8 Intel Xeon CPUs (3.60 GHz) and 32 GB RAM
- MATLAB R2018a (9.4.0.813654)

Instances

Randomly generated well-conditioned instances

Initial finite approximation of
$$V^* = \{ \mathbf{v} \in \mathbb{R}^{n-1} : \|\mathbf{v}\|_2 \leq 1 \}$$

$$V^{(0)} := \{ \pm \boldsymbol{e}_j \in \mathbb{R}^{n-1} : j = 1, 2, \dots, n-1 \}$$

Numerical experiments: Setting (cont'd)

Computation of $\operatorname{proj}_{P(k)}(\boldsymbol{w}^{(k)})$

Solve the following QP by using lsqlin

minimize
$$\left\| \begin{pmatrix} \boldsymbol{c}^{\top} \\ \boldsymbol{A} \end{pmatrix} \boldsymbol{x} - \begin{pmatrix} \gamma^{(k)} \\ \boldsymbol{\beta}^{(k)} \end{pmatrix} \right\|^2$$
subject to $(1, \boldsymbol{v}^{\top}) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in V^{(k)}$

Stopping criteria

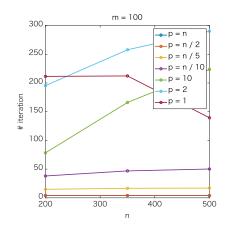
If $x^{(k)}$ satisfies the following criteria,

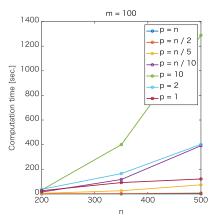
$$\max\{\|\boldsymbol{A}\boldsymbol{x}^{(k)}-\boldsymbol{b}\|,\|\bar{\boldsymbol{x}}^{1,(k)}\|-\boldsymbol{x}_1^{1,(k)},\dots,\|\bar{\boldsymbol{x}}^{p,(k)}\|-\boldsymbol{x}_1^{p,(k)}\}\leq 10^{-4}$$

where $\mathbf{x}^i \in \mathbb{R}^{n_i}$ denotes the *i*-th block of \mathbf{x} partitioned along the Cartesian structure of $\mathcal{K} = \mathcal{K}^{n_1} \times \dots \mathcal{K}^{n_p}$, *i.e.*, $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^p)$

of variable vs # iteration & comput. time

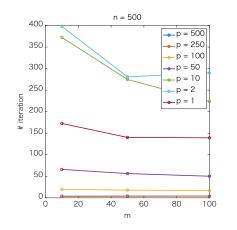
- m = # linear constr., n = # variables, p = # blocks
- Set $n_1 = \cdots = n_p = n/p$, where $(n_1, \ldots, n_p) =$ Cartesian struct. of $\mathcal K$
- Average of 10 trials is shown

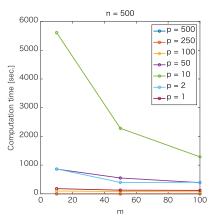




of linear constraints vs # iteration & comput. time

- m = # linear constr., n = # variables, p = # blocks
- Set $n_1 = \cdots = n_p = n/p$, where $(n_1, \ldots, n_p) =$ Cartesian struct. of $\mathcal K$
- Average of 10 trials is shown





Comparison with interior-point method

- Used SDPT3 with default setting
- Average of 10 trials is shown

# dimensions		time [sec.]		
m	n	(n_1, n_2, \ldots, n_p)	ALPN	SDPT3
1400	1500	$(3, 3, \ldots, 3)$	177.3	366.6
1700	1800	$(3,3,\ldots,3)$	260.4	638.4
2000	2100	$(3,3,\ldots,3)$	363.4	970.0

Concluding remarks

Contribution

- Proposed adaptive LP-Newton method for solving SOCP
- Used polyhedral approximation of SOC via semi-infinite representation
- Quickly solved instances with "low-dim" SOCs and many linear constr

Future work

- Efficient computation of the projection
- Complexity analysis

Preprint

T. Okuno and M. Tanaka:

Extension of the LP-Newton method to SOCPs via semi-infinite representation,

arXiv:1902.01004.

References I

Fujishige, S., Hayashi, T., Yamashita, K., and Zimmermann, U. (2009). Zonotopes and the LP-Newton method.

Optimization and Engineering, 10:193-205.

Hayashi, S., Okuno, T., and Ito, Y. (2016).

Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation.

Optimization Methods and Software, 31:1272-1297.

Kitahara, T., Mizuno, S., and Shi, J. (2013).

The LP-Newton method for standard form linear programming problems.

Operations Research Letters, 41:426–429.

Kitahara, T. and Sukegawa, N. (2019).

A simple projection algorithm for linear programming problems.

Algorithmica, 81:167-178.

References II

Kitahara, T. and Tsuchiya, T. (2018).

An extension of Chubanov's polynomial-time linear programming algorithm to second-order cone programming.

Optimization Methods and Software, 33:1-25.

Monteiro, R. D. C. and Tsuchiya, T. (2000).

Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions.

Mathematical Programming, 88:61–83.

Muramatsu, M. (2006).

A pivoting procedure for a class of second-order cone programming.

Optimization Methods and Software, 21:295–315.

Okuno, T. and Tanaka, M. (2019).

Extension of the LP-Newton method to SOCPs via semi-infinite representation. ar Xiv: 1902.01004.

References III

Silvestri, F. and Reinelt, G. (2017).

The LP-Newton method and conic optimization.

arXiv:1611.09260v2.

Wilhelmsen, D. R. (1976).

A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation.

Mathematics of Computation, 30:48-57.

Wolfe, P. (1976).

Finding the nearest point in a polytope.

Mathematical Programming, 11:128-149.