Adaptive LP-Newton method for SOCP

Takayuki Okuno ${ }^{1}$ Mirai Tanaka ${ }^{1,2}$

${ }^{1}$ RIKEN, ${ }^{2}$ ISM

March 29th, 2018
 The 4th ISM-ZIB-IMI MODAL Workshop on Mathematical Optimization and Data Analysis

E. Okuno and M. Tanaka:

Extension of the LP-Newton method to SOCPs via semi-infinite representation, arXiv:1902.01004.

Table of contents

1. SOCP: Second-order cone optimization problem
2. LP-Newton method for LP
3. Extension of LP-Newton method to SOCP
4. Numerical results
5. Concluding remarks

Second-order cone optimization problem (SOCP)

Linear optimization problem (LP)

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

is generalized to second-order cone optimization problem (SOCP)

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \in \mathcal{K}
\end{array}
$$

where $\mathcal{K}=\mathcal{K}^{n_{1}} \times \cdots \times \mathcal{K}^{n_{p}}$

$$
\mathcal{K}^{n}=\left\{\left(x_{1}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n-1}: x_{1} \geq\|\bar{x}\|_{2}\right\}
$$

In this slides, $p=1$ for simplicity

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP
Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method
[Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]
Optimality condition

$$
\begin{array}{ll}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, & \boldsymbol{x} \geq \mathbf{0} \\
\boldsymbol{A}^{\top} \boldsymbol{y}-\boldsymbol{s}=\boldsymbol{c}, & \boldsymbol{s} \geq \mathbf{0} \\
\boldsymbol{x} \circ \boldsymbol{s}=\mathbf{0} & \text { (elementwise product) }
\end{array}
$$

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP
Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method
[Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]
Optimality condition

$$
\begin{array}{lll}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, & x \geq 0 & x \in \mathcal{K} \\
\boldsymbol{A}^{\top} \boldsymbol{y}-\boldsymbol{s}=\boldsymbol{c}, & \underline{s} \geq 0 & s \in \mathcal{K} \\
\boldsymbol{x} \circ \boldsymbol{s}=\mathbf{0} & \underline{\text { (elementwise product) }} & \text { (Jordan product) }
\end{array}
$$

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP
Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method
[Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]
Semi-infinite representation

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in \mathbb{R}^{n-1}:\|\boldsymbol{v}\|_{2} \leq 1 \\
& \left(\Longleftrightarrow \boldsymbol{x} \in \mathcal{K}^{n}\right)
\end{array}
$$

Table of contents

1. SOCP: Second-order cone optimization problem
2. LP-Newton method for LP
3. Extension of LP-Newton method to SOCP
4. Numerical results
5. Concluding remarks

LP-Newton method: Overview

LP-Newton method originally proposed for solving box-constrained LP

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{I} \leq \boldsymbol{x} \leq \boldsymbol{u}
\end{array}
$$

by [Fujishige et al., 2009]
"LP" in "the LP-Newton method" means

- line and polytope
- rather than linear program
and "Newton method" means that for solving nonlinear equation $f(\gamma)=b$

Optimal value of $L P$ is endpoint of $L \cap P$

where

$$
\begin{aligned}
L & :=\left\{(\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m}: \boldsymbol{\beta}=\boldsymbol{b}\right\} \\
P & :=\left\{(\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m}: \boldsymbol{c}^{\top} \boldsymbol{x}=\gamma, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}, \boldsymbol{I} \leq \boldsymbol{x} \leq \boldsymbol{u}\right\}
\end{aligned}
$$

Optimal value γ^{*} is bounded from above, i.e., $\gamma^{*} \leq \boldsymbol{c}^{\top} \overline{\boldsymbol{x}}$, where

$$
\bar{x}_{j}:=\left\{\begin{array}{ll}
u_{j} & \left(c_{j} \geq 0\right) \\
I_{j} & \left(c_{j}<0\right)
\end{array}(j=1, \ldots, n)\right.
$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

c.f.: Newton method for $f(\gamma)=b$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

Geometric interpletation of LP-Newton method

LP-Newton method for solving box-constrained LP

$$
\begin{array}{ll}
\underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\
\text { subject to } & \boldsymbol{w}:=(\gamma, \boldsymbol{\beta}) \in L \cap P
\end{array}
$$

LP-Newton method

Algorithm 1 LP-Newton method for solving box-constrained LP
1: Set $\boldsymbol{w}^{(0)}:=\left(\gamma^{(0)}, \boldsymbol{b}\right)$ for sufficiently large $\gamma^{(0)}$, e.g., $\gamma^{(0)}:=\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}$
2: for $k=0,1, \ldots$ (until convergence)
3: Compute the orthogonal projection $\left(\gamma^{(k)}, \boldsymbol{\beta}^{(k)}\right):=\operatorname{proj}_{p}\left(\boldsymbol{w}^{(k)}\right)$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope P and find $\boldsymbol{x}^{(k)}$ satisfying $\boldsymbol{c}^{\top} \boldsymbol{x}^{(k)}=\gamma^{(k)}, \boldsymbol{A} \boldsymbol{x}^{(k)}=\boldsymbol{\beta}^{(k)}, \boldsymbol{I} \leq \boldsymbol{x}^{(k)} \leq \boldsymbol{u}$
4: Compute the intersecting point $\boldsymbol{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to P at $\operatorname{proj}_{P}\left(\boldsymbol{w}^{(k)}\right)$ and line L

Theorem [Fujishige et al., 2009, Theorem 3.11]
LP-Newton method solves LP in a finite \# steps

Remark

- Computation of the intersecting point $\boldsymbol{w}^{(k+1)}$ is easy because $\boldsymbol{w}^{(k)}-\operatorname{proj}_{P}\left(\boldsymbol{w}^{(k)}\right) \perp H^{(k)}$
- Computation of the projection is not trivial

Variants of LP-Newton method and their complexity

Literature	Outer algo	Inner algo (projection)
[Fujishige et al., 2009]	LP-Newton	[Wolfe, 1976]
[Kitahara et al., 2013]	LP-Newton	[Wilhelmsen, 1976]
[Kitahara and Sukegawa, 2019]	bisection	[Wolfe, 1976]

Note
 [Kitahara et al., 2013] solves

Overall complexity is roughly
\# outer steps \times complexity of inner algo
but still theoretically open because

- complexity of inner algo [Wolfe, 1976, Wilhelmsen, 1976] is unknown
- \# outer LP-Newton steps is finite but unknown
- (\# outer bisection steps is polynomial)

In practice, \# outer LP-Newton step is small $(\lesssim 5)$

Table of contents

1. SOCP: Second-order cone optimization problem
2. LP-Newton method for LP
3. Extension of LP-Newton method to SOCP
4. Numerical results
5. Concluding remarks

How extend LP-Newton method to SOCP?

[Silvestri and Reinelt, 2017] applied the LP-Newton method to conic-box-constrained SOCP

where

$$
\begin{aligned}
& \boldsymbol{a} \preceq \boldsymbol{b} \Longleftrightarrow \boldsymbol{b}-\boldsymbol{a} \in \mathcal{K} \\
& P^{*}:=\left\{(\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m}: \boldsymbol{c}^{\top} \boldsymbol{x}=\gamma, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}, \boldsymbol{I} \preceq \boldsymbol{x} \preceq \boldsymbol{u}\right\}
\end{aligned}
$$

P^{*} is not polyhedral \Rightarrow Computation of $\operatorname{proj}_{p^{*}}\left(w^{(k)}\right)$ is more challenging
For computing $\operatorname{proj}_{p^{*}}\left(\boldsymbol{w}^{(k)}\right)$, [Silvestri and Reinelt, 2017] proposed Frank-Wolfe-type algorithm as inner algorithm Time consuming?

Our approach: Polyhedral approximation

Polyhedral approximation via semi-infinite representation

$\operatorname{maximize}$ subject to	$\boldsymbol{c}^{\top} \boldsymbol{x}$			
	$\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$	$. \Longleftrightarrow$	$\operatorname{maximize}$ \boldsymbol{x}	$\boldsymbol{c}^{\top} \boldsymbol{x}$
:---	:---			
subject to	$\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$			
	$\left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in V^{*}$			

where

$$
V^{*}:=\left\{\boldsymbol{v} \in \mathbb{R}^{n-1}:\|\boldsymbol{v}\|_{2} \leq 1\right\}
$$

Of course, $\left|V^{*}\right|=\infty$
Finite approximation, i.e., LP relaxation using $V \subset V^{*}$ such that $|V|<\infty$

```\(\underset{x}{\operatorname{maximize}} \boldsymbol{c}^{\top} \boldsymbol{x}\) subject to \(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\) \(\left(1, v^{\top}\right) x \geq 0, \forall v \in V\)```	$\longleftarrow$	$\begin{array}{ll} \underset{\gamma, \boldsymbol{\beta}}{\operatorname{maximize}} & \gamma \\ \text { subject to } & (\gamma, \beta) \in L \cap P \\ \hline \end{array}$

where

$$
P:=\left\{(\gamma, \boldsymbol{\beta}) \in \mathbb{R}^{1+m}: \boldsymbol{c}^{\top} \boldsymbol{x}=\gamma, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta},\left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x}^{(k)} \geq 0, \forall \boldsymbol{v} \in V\right\}
$$

LP-Newton method (for LP) can be applied to the resulting problem

## Adaptive LP-Newton method

Idea: Apply LP-Newton method (for LP) adding cuts adaptively

## Algorithm 2

LP-Newton method for box-constrained LP

2: Set $\boldsymbol{w}^{(0)}:=\left(\gamma^{(0)}, \boldsymbol{b}\right)$ for sufficiently large $\gamma^{(0)}$, e.g., $\gamma^{(0)}:=\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}$
3: for $k=0,1, \ldots$ (until convergence)
4: $\quad$ Compute the orthogonal projection $\left(\gamma^{(k)}, \boldsymbol{\beta}^{(k)}\right)=\operatorname{proj}_{P} \quad\left(\boldsymbol{w}^{(k)}\right)$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope $P$ and find $\boldsymbol{x}^{(k)}$ corresponding to $\left(\gamma^{(k)}, \boldsymbol{\beta}^{(k)}\right)$
5: Compute the intersecting point $\boldsymbol{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to $P$ at $\operatorname{proj}_{P} \quad\left(w^{(k)}\right)$ and line $L$

## Adaptive LP-Newton method

Idea: Apply LP-Newton method (for LP) adding cuts adaptively

Algorithm 3 Adaptive LP-Newton method for box-constrained LP SOCP
1: Generate initial finite approximation $V^{(0)}$ appropriately
2: Set $\boldsymbol{w}^{(0)}:=\left(\gamma^{(0)}, \boldsymbol{b}\right)$ for sufficiently large $\gamma^{(0)}, \overline{\text { e.g. }, \gamma^{(0)}}:=\boldsymbol{c}^{\top} \overline{\bar{x}}$
3: for $k=0,1, \ldots$ (until convergence)
4: Compute the orthogonal projection $\left(\gamma^{(k)}, \boldsymbol{\beta}^{(k)}\right)=\operatorname{proj}_{p(k)}\left(w^{(k)}\right)$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope $P^{(k)}$ corresponding to $V^{(k)}$ and find $\boldsymbol{x}^{(k)}$ corresponding to $\left(\gamma^{(k)}, \boldsymbol{\beta}^{(k)}\right)$
5: Compute the intersecting point $\boldsymbol{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to $P^{(k)}$ at $\operatorname{proj}_{P^{(k)}}\left(\boldsymbol{w}^{(k)}\right)$ and line $L$
6: $\quad$ Compute $\boldsymbol{v}^{(k)} \in \operatorname{argmin}_{\boldsymbol{v} \in V^{*}}\left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x}^{(k)}$
7: $\quad$ if $\left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x}^{(k)}<0$ then
$\triangleright$ Otherwise, $\boldsymbol{x}^{(k)} \in \mathcal{K}$
8: $\quad$ Update $V^{(k+1)}:=V^{(k)} \cup\left\{\boldsymbol{v}^{(k)}\right\}$

## Global convergence

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \in \mathcal{K} \tag{1}
\end{array}
$$

Assumption
The optimal set of SOCP (1) is nonempty and compact
Theorem
Let $\left\{\boldsymbol{x}^{(k)}\right\}$ be a sequence generated by the adaptive LP-Newton method. Under the assumption above, any accumuration point of $\left\{\boldsymbol{x}^{(k)}\right\}$ is an optimal solution of SOCP (1)

## Remark

The assumption above is satisfied if the dual problem

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{b}^{\top} \boldsymbol{y} \\
\text { subject to } & \boldsymbol{A}^{\top} \boldsymbol{y}-\boldsymbol{c} \in \mathcal{K}
\end{array}
$$

of SOCP (1) has an optimal solution and interior feasible solutions

## Table of contents

1. SOCP: Second-order cone optimization problem
2. LP-Newton method for LP
3. Extension of LP-Newton method to SOCP
4. Numerical results
5. Concluding remarks

## Numerical experiments: Setting

- Performance of our adaptive LP-Newton method
- Comparison with an interiot-point method

Experiment environment

- CentOS 6.10 with 8 Intel Xeon CPUs ( 3.60 GHz ) and 32 GB RAM
- MATLAB R2018a (9.4.0.813654)


## Instances

Randomly generated well-conditioned instances
Initial finite approximation of $V^{*}=\left\{\boldsymbol{v} \in \mathbb{R}^{n-1}:\|v\|_{2} \leq 1\right\}$

$$
V^{(0)}:=\left\{ \pm \boldsymbol{e}_{j} \in \mathbb{R}^{n-1}: j=1,2, \ldots, n-1\right\}
$$

## Numerical experiments: Setting (cont'd)

Computation of $\operatorname{proj}_{P(k)}\left(\boldsymbol{w}^{(k)}\right)$
Solve the following QP by using lsqlin

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \left\|\binom{\boldsymbol{c}^{\top}}{\boldsymbol{A}} x-\binom{\gamma^{(k)}}{\boldsymbol{\beta}^{(k)}}\right\|^{2} \\
\text { subject to } & \left(1, \boldsymbol{v}^{\top}\right) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in V^{(k)}
\end{array}
$$

## Stopping criteria

If $\boldsymbol{x}^{(k)}$ satisfies the following criteria,

$$
\max \left\{\left\|\boldsymbol{A} \boldsymbol{x}^{(k)}-\boldsymbol{b}\right\|,\left\|\overline{\boldsymbol{x}}^{1,(k)}\right\|-\boldsymbol{x}_{1}^{1,(k)}, \ldots,\left\|\overline{\boldsymbol{x}}^{p,(k)}\right\|-\boldsymbol{x}_{1}^{p,(k)}\right\} \leq 10^{-4}
$$

where $\boldsymbol{x}^{i} \in \mathbb{R}^{n_{i}}$ denotes the $i$-th block of $x$ partitioned along the Cartesian structure of $\mathcal{K}=\mathcal{K}^{n_{1}} \times \ldots \mathcal{K}^{n_{p}}$, i.e., $x=\left(x^{1}, \ldots, x^{p}\right)$

## \# of variable vs \# iteration \& comput. time

- $m=\#$ linear constr., $n=\#$ variables, $p=\#$ blocks
- Set $n_{1}=\cdots=n_{p}=n / p$, where $\left(n_{1}, \ldots, n_{p}\right)=$ Cartesian struct. of $\mathcal{K}$
- Average of 10 trials is shown




## \# of linear constraints vs \# iteration \& comput. time

- $m=\#$ linear constr., $n=\#$ variables, $p=\#$ blocks
- Set $n_{1}=\cdots=n_{p}=n / p$, where $\left(n_{1}, \ldots, n_{p}\right)=$ Cartesian struct. of $\mathcal{K}$
- Average of 10 trials is shown




## Comparison with interior-point method

- Used SDPT3 with default setting
- Average of 10 trials is shown

\# dimensions				time [sec.]	
$m$	$n$	$\left(n_{1}, n_{2}, \ldots, n_{p}\right)$		ALPN	SDPT3
1400	1500	$(3,3, \ldots, 3)$		177.3	366.6
1700	1800	$(3,3, \ldots, 3)$		260.4	638.4
2000	2100	$(3,3, \ldots, 3)$		363.4	970.0

## Table of contents

1. SOCP: Second-order cone optimization problem
2. LP-Newton method for LP
3. Extension of LP-Newton method to SOCP
4. Numerical results
5. Concluding remarks

## Concluding remarks

Contribution

- Proposed adaptive LP-Newton method for solving SOCP
- Used polyhedral approximation of SOC via semi-infinite representation
- Quickly solved instances with "low-dim" SOCs and many linear constr


## Future work

- Efficient computation of the projection
- Complexity analysis

Preprint
T. Okuno and M. Tanaka:

Extension of the LP-Newton method to SOCPs via semi-infinite representation, arXiv:1902.01004.

Thank you for your attention

## References I

E Fujishige, S., Hayashi, T., Yamashita, K., and Zimmermann, U. (2009). Zonotopes and the LP-Newton method.
Optimization and Engineering, 10:193-205.
E. Hayashi, S., Okuno, T., and Ito, Y. (2016).

Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation.
Optimization Methods and Software, 31:1272-1297.
Eit Kitahara, T., Mizuno, S., and Shi, J. (2013).
The LP-Newton method for standard form linear programming problems.
Operations Research Letters, 41:426-429.
E. Kitahara, T. and Sukegawa, N. (2019).

A simple projection algorithm for linear programming problems.
Algorithmica, 81:167-178.

## References II

Kitahara, T. and Tsuchiya, T. (2018).
An extension of Chubanov's polynomial-time linear programming algorithm to second-order cone programming.
Optimization Methods and Software, 33:1-25.
E. Monteiro, R. D. C. and Tsuchiya, T. (2000).

Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions.
Mathematical Programming, 88:61-83.
E Muramatsu, M. (2006).
A pivoting procedure for a class of second-order cone programming.
Optimization Methods and Software, 21:295-315.
Okuno, T. and Tanaka, M. (2019).
Extension of the LP-Newton method to SOCPs via semi-infinite representation. arXiv:1902.01004.

## References III

Silvestri, F. and Reinelt, G. (2017).
The LP-Newton method and conic optimization.
arXiv:1611.09260v2.
Wilhelmsen, D. R. (1976).
A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation.
Mathematics of Computation, 30:48-57.
E Wolfe, P. (1976).
Finding the nearest point in a polytope.
Mathematical Programming, 11:128-149.

