Adaptive LP-Newton method for SOCP

Takayuki Okuno¹ Mirai Tanaka^{1,2}

¹RIKEN, ²ISM

March 29th, 2018 The 4th ISM-ZIB-IMI MODAL Workshop on Mathematical Optimization and Data Analysis

T. Okuno and M. Tanaka: Extension of the LP-Newton method to SOCPs via semi-infinite representation, arXiv:1902.01004.

Table of contents

1. SOCP: Second-order cone optimization problem

2. LP-Newton method for LP

3. Extension of LP-Newton method to SOCP

4. Numerical results

5. Concluding remarks

Second-order cone optimization problem (SOCP) Linear optimization problem (LP)

 $\begin{array}{ll} \mathsf{maximize} & \boldsymbol{c}^\top \boldsymbol{x} \\ \mathsf{subject to} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

is generalized to second-order cone optimization problem (SOCP)

maximize $c^{\top}x$ subject to Ax = b $x \in \mathcal{K}$

where $\mathcal{K} = \mathcal{K}^{n_1} \times \cdots \times \mathcal{K}^{n_p}$

 $\mathcal{K}^n = \{(x_1, oldsymbol{\bar{x}}) \in \mathbb{R} imes \mathbb{R}^{n-1} : x_1 \geq \|oldsymbol{\bar{x}}\|_2\}$

In this slides, p = 1 for simplicity

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP

Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method [Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]

Optimality condition

 $egin{aligned} egin{aligned} egi$

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP

Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method [Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]

Optimality condition

 $\begin{array}{ll} Ax = b, & x \geq 0 & x \in \mathcal{K} \\ A^{\top}y - s = c, & s \geq 0 & s \in \mathcal{K} \\ x \circ s = 0 & (elementwise product) & (Jordan product) \end{array}$

Algorithms for solving SOCP

Basically generarization of algorithms for solving LP

Using Euclidian Jordan algebra

- Interior-point method [Monteiro and Tsuchiya, 2000]
- Chubanov's algorithm [Kitahara and Tsuchiya, 2018]

Using semi-infinite representation

- Simplex method [Hayashi et al., 2016, Muramatsu, 2006]
- LP-Newton method [Silvestri and Reinelt, 2017, Okuno and Tanaka, 2019]

Semi-infinite representation

Table of contents

1. SOCP: Second-order cone optimization problem

2. LP-Newton method for LP

3. Extension of LP-Newton method to SOCP

4. Numerical results

5. Concluding remarks

LP-Newton method: Overview

LP-Newton method originally proposed for solving box-constrained LP

 $\begin{array}{ll} \mathsf{maximize} & \boldsymbol{c}^\top \boldsymbol{x} \\ \mathsf{subject to} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{I} \leq \boldsymbol{x} \leq \boldsymbol{u} \end{array}$

by [Fujishige et al., 2009]

"LP" in "the LP-Newton method" means

line and polytope

• rather than linear program

and "Newton method" means that for solving nonlinear equation $f(\gamma) = b$

Optimal value of LP is endpoint of $L \cap P$

where

$$egin{aligned} \mathcal{L} &:= \{(\gamma, oldsymbol{eta}) \in \mathbb{R}^{1+m} : oldsymbol{eta} = oldsymbol{b}\} \ \mathcal{P} &:= \{(\gamma, oldsymbol{eta}) \in \mathbb{R}^{1+m} : oldsymbol{c}^ op oldsymbol{x} = \gamma, oldsymbol{A}oldsymbol{x} = oldsymbol{eta}, oldsymbol{I} \leq oldsymbol{x} \leq oldsymbol{u}\} \end{aligned}$$

Optimal value γ^* is bounded from above, *i.e.*, $\gamma^* \leq \boldsymbol{c}^\top \bar{\boldsymbol{x}}$, where

$$ar{x}_j := egin{cases} u_j & (c_j \geq 0) \ l_j & (c_j < 0) \ \end{pmatrix} (j=1,\ldots,n)$$

LP-Newton method for solving box-constrained LP

c.f.: Newton method for $f(\gamma) = b$ β $\beta = f(\gamma)$ bc $\gamma_{\gamma}^{*}(k+1) \ \gamma^{(k)}$ γ

8 / 23

LP-Newton method for solving box-constrained LP

8 / 23

LP-Newton method for solving box-constrained LP

LP-Newton method for solving box-constrained LP

 $\begin{array}{ll} \underset{\gamma, \boldsymbol{\beta}}{\text{maximize}} & \gamma \\ \text{subject to} & \boldsymbol{w} := (\gamma, \boldsymbol{\beta}) \in L \cap P \end{array}$

8 / 23

LP-Newton method for solving box-constrained LP

 $\begin{array}{ll} \underset{\gamma, \boldsymbol{\beta}}{\text{maximize}} & \gamma \\ \text{subject to} & \boldsymbol{w} := (\gamma, \boldsymbol{\beta}) \in L \cap P \end{array}$

LP-Newton method for solving box-constrained LP

 $\begin{array}{ll} \underset{\gamma, \boldsymbol{\beta}}{\text{maximize}} & \gamma \\ \text{subject to} & \boldsymbol{w} := (\gamma, \boldsymbol{\beta}) \in L \cap P \end{array}$

LP-Newton method

Algorithm 1 LP-Newton method for solving box-constrained LP

- 1: Set $\boldsymbol{w}^{(0)} := (\gamma^{(0)}, \boldsymbol{b})$ for sufficiently large $\gamma^{(0)}$, e.g., $\gamma^{(0)} := \boldsymbol{c}^{\top} \bar{\boldsymbol{x}}$ 2: for $k = 0, 1, \ldots$ (until convergence)
- 3: Compute the orthogonal projection $(\gamma^{(k)}, \beta^{(k)}) := \text{proj}_P(\boldsymbol{w}^{(k)})$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope P and find $\boldsymbol{x}^{(k)}$ satisfying $\boldsymbol{c}^{\top} \boldsymbol{x}^{(k)} = \gamma^{(k)}, \boldsymbol{A} \boldsymbol{x}^{(k)} = \beta^{(k)}, \boldsymbol{I} \leq \boldsymbol{x}^{(k)} \leq \boldsymbol{u}$
- 4: Compute the intersecting point $w^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to P at $\operatorname{proj}_{P}(w^{(k)})$ and line L

Theorem [Fujishige et al., 2009, Theorem 3.11] LP-Newton method solves LP in a finite # steps

Remark

- Computation of the intersecting point $w^{(k+1)}$ is easy because $w^{(k)} - \operatorname{proj}_{P}(w^{(k)}) \perp H^{(k)}$
- Computation of the projection is not trivial

Variants of LP-Newton method and their complexity

Literature	Outer algo	Inner algo (projection)
[Fujishige et al., 2009] [Kitahara et al., 2013] [Kitahara and Sukegawa, 2019]		[Wolfe, 1976] [Wilhelmsen, 1976] [Wolfe, 1976]

Note

[Kitahara et al., 2013] solves

maximize	c⊤x
subject to	Ax = b
	$x \ge 0$

Corresponding P is polyhedral cone

but still theoretically open because

outer steps \times complexity of inner algo

Overall complexity is roughly

- complexity of inner algo [Wolfe, 1976, Wilhelmsen, 1976] is unknown
- # outer LP-Newton steps is finite but unknown
- (# outer bisection steps is polynomial)

In practice, # outer LP-Newton step is small (\lesssim 5)

Table of contents

1. SOCP: Second-order cone optimization problem

2. LP-Newton method for LP

3. Extension of LP-Newton method to SOCP

4. Numerical results

5. Concluding remarks

How extend LP-Newton method to SOCP? [Silvestri and Reinelt, 2017] applied the LP-Newton method to conic-box-constrained SOCP

$$\begin{array}{c|c} \underset{\mathbf{x}}{\text{maximize}} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ & \mathbf{I} \preceq \mathbf{x} \preceq \mathbf{u} \end{array} \iff \begin{array}{c} \underset{\gamma,\beta}{\text{maximize}} & \gamma \\ \text{subject to} & (\gamma,\beta) \in L \cap P^* \end{array}$$

where

 $a \leq b \iff b - a \in \mathcal{K}$ $P^* := \{(\gamma, \beta) \in \mathbb{R}^{1+m} : c^\top x = \gamma, Ax = \beta, I \leq x \leq u\}$

 P^* is not polyhedral \heartsuit Computation of proj_{P^*} ($w^{(k)}$) is more challenging

For computing $\text{proj}_{P^*}(\boldsymbol{w}^{(k)})$, [Silvestri and Reinelt, 2017] proposed Frank–Wolfe-type algorithm as inner algorithm \heartsuit Time consuming?

Our approach: Polyhedral approximation

Polyhedral approximation via semi-infinite representation

$$\begin{array}{c|c} \underset{\mathbf{x}}{\text{maximize}} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \in \mathcal{K} \end{array} \longleftrightarrow \begin{array}{c} \underset{\mathbf{x}}{\text{maximize}} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ (1, \mathbf{v}^{\top})\mathbf{x} \ge 0, \forall \mathbf{v} \in \mathbf{V}^{*} \end{array}$$

where

$$V^* := \{ \boldsymbol{v} \in \mathbb{R}^{n-1} : \| \boldsymbol{v} \|_2 \le 1 \}$$

Of course, $|V^*| = \infty$

Finite approximation, *i.e.*, LP relaxation using $V \subset V^*$ such that $|V| < \infty$

maximize <i>x</i>		maximize	γ
subject to	to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ $(1, \boldsymbol{v}^{\top})\boldsymbol{x} \ge 0, \forall \boldsymbol{v} \in \boldsymbol{V}$	subject to	$(\gamma, \boldsymbol{\beta}) \in L \cap P$

where

$$P := \{(\gamma, oldsymbol{eta}) \in \mathbb{R}^{1+m} : oldsymbol{c}^ op oldsymbol{x} = \gamma, oldsymbol{A}oldsymbol{x} = oldsymbol{eta}, (1, oldsymbol{v}^ op)oldsymbol{x}^{(k)} \geq 0, orall oldsymbol{v} \in oldsymbol{V}\}$$

LP-Newton method (for LP) can be applied to the resulting problem

Adaptive LP-Newton method

Idea: Apply LP-Newton method (for LP) adding cuts adaptively

Algorithm 2

LP-Newton method for box-constrained LP

- 2: Set $\boldsymbol{w}^{(0)} := (\gamma^{(0)}, \boldsymbol{b})$ for sufficiently large $\gamma^{(0)}$, e.g., $\gamma^{(0)} := \boldsymbol{c}^{\top} \bar{\boldsymbol{x}}$ 3: for k = 0, 1, ... (until convergence)
- 4: Compute the orthogonal projection $(\gamma^{(k)}, \beta^{(k)}) = \text{proj}_P \quad (\boldsymbol{w}^{(k)}) \text{ of}$ the current point $\boldsymbol{w}^{(k)}$ onto polytope Pand find $\boldsymbol{x}^{(k)}$ corresponding to $(\gamma^{(k)}, \beta^{(k)})$
- 5: Compute the intersecting point $w^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to P at proj_P $(w^{(k)})$ and line L

Adaptive LP-Newton method

Idea: Apply LP-Newton method (for LP) adding cuts adaptively

Algorithm 3 Adaptive LP-Newton method for box-constrained LP SOCP

- 1: Generate initial finite approximation $V^{(0)}$ appropriately
- 2: Set $\boldsymbol{w}^{(0)} := (\gamma^{(0)}, \boldsymbol{b})$ for sufficiently large $\gamma^{(0)}, \ e.g., \gamma^{(0)} := \boldsymbol{c}^{\top} \bar{\boldsymbol{x}}$
- 3: for k = 0, 1, ... (until convergence)
- 4: Compute the orthogonal projection $(\gamma^{(k)}, \beta^{(k)}) = \operatorname{proj}_{P^{(k)}}(\boldsymbol{w}^{(k)})$ of the current point $\boldsymbol{w}^{(k)}$ onto polytope $P^{(k)}$ corresponding to $V^{(k)}$ and find $\boldsymbol{x}^{(k)}$ corresponding to $(\gamma^{(k)}, \beta^{(k)})$
- 5: Compute the intersecting point $\boldsymbol{w}^{(k+1)}$ of the supporting hyperplane $H^{(k)}$ to $P^{(k)}$ at $\operatorname{proj}_{P^{(k)}}(\boldsymbol{w}^{(k)})$ and line L
- 6: Compute $\mathbf{v}^{(k)} \in \operatorname{argmin}_{\mathbf{v} \in \mathbf{V}^*}(1, \mathbf{v}^\top) \mathbf{x}^{(k)}$
- 7: **if** $(1, \mathbf{v}^{\top})\mathbf{x}^{(k)} < 0$ **then** \triangleright Otherwise, $\mathbf{x}^{(k)} \in \mathcal{K}$ 8: Update $V^{(k+1)} := V^{(k)} \cup \{\mathbf{v}^{(k)}\}$

Global convergence

 $\begin{array}{ll} \hline \mathsf{maximize} & \boldsymbol{c}^\top \boldsymbol{x} \\ \mathsf{subject to} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \in \mathcal{K} \end{array}$

Assumption

The optimal set of SOCP (1) is nonempty and compact

Theorem

Let $\{\mathbf{x}^{(k)}\}\$ be a sequence generated by the adaptive LP-Newton method. Under the assumption above, any accumuration point of $\{\mathbf{x}^{(k)}\}\$ is an optimal solution of SOCP (1)

Remark

The assumption above is satisfied if the dual problem

 $\begin{array}{ll} \mathsf{minimize} & \boldsymbol{b}^\top \boldsymbol{y} \\ \mathsf{subject to} & \boldsymbol{A}^\top \boldsymbol{y} - \boldsymbol{c} \in \mathcal{K} \end{array}$

of SOCP (1) has an optimal solution and interior feasible solutions

(1)

Table of contents

1. SOCP: Second-order cone optimization problem

2. LP-Newton method for LP

3. Extension of LP-Newton method to SOCP

4. Numerical results

5. Concluding remarks

Numerical experiments: Setting

- Performance of our adaptive LP-Newton method
- Comparison with an interiot-point method

Experiment environment

- CentOS 6.10 with 8 Intel Xeon CPUs (3.60 GHz) and 32 GB RAM
- MATLAB R2018a (9.4.0.813654)

Instances

Randomly generated well-conditioned instances

Initial finite approximation of $V^* = \{ \mathbf{v} \in \mathbb{R}^{n-1} : \|\mathbf{v}\|_2 \le 1 \}$

$$V^{(0)} := \{ \pm \boldsymbol{e}_j \in \mathbb{R}^{n-1} : j = 1, 2, \dots, n-1 \}$$

Numerical experiments: Setting (cont'd)

Computation of $\text{proj}_{P^{(k)}}(w^{(k)})$ Solve the following QP by using lsqlin

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & \left\| \begin{pmatrix} \boldsymbol{c}^{\top} \\ \boldsymbol{A} \end{pmatrix} \boldsymbol{x} - \begin{pmatrix} \gamma^{(k)} \\ \beta^{(k)} \end{pmatrix} \right\|^2 \\ \text{subject to} & (1, \boldsymbol{v}^{\top}) \boldsymbol{x} \geq 0, \forall \boldsymbol{v} \in V^{(k)} \end{array}$$

Stopping criteria If $x^{(k)}$ satisfies the following criteria,

 $\max\{\|m{A}m{x}^{(k)} - m{b}\|, \|ar{m{x}}^{1,(k)}\| - m{x}_1^{1,(k)}, \dots, \|ar{m{x}}^{p,(k)}\| - m{x}_1^{p,(k)}\} \le 10^{-4}$

where $\mathbf{x}^i \in \mathbb{R}^{n_i}$ denotes the *i*-th block of \mathbf{x} partitioned along the Cartesian structure of $\mathcal{K} = \mathcal{K}^{n_1} \times \ldots \mathcal{K}^{n_p}$, *i.e.*, $\mathbf{x} = (\mathbf{x}^1, \ldots, \mathbf{x}^p)$

of variable vs # iteration & comput. time

- m = # linear constr., n = # variables, p = # blocks
- Set $n_1 = \cdots = \overline{n_p} = n/p$, where $(n_1, \ldots, n_p) = Cartesian$ struct. of \mathcal{K}
- Average of 10 trials is shown

19 / 23

of linear constraints vs # iteration & comput. time

- m = # linear constr., n = # variables, p = # blocks
- Set $n_1 = \cdots = \overline{n_p} = n/p$, where $(n_1, \ldots, n_p) = Cartesian$ struct. of \mathcal{K}
- Average of 10 trials is shown

Comparison with interior-point method

- Used SDPT3 with default setting
- Average of 10 trials is shown

# dimensions		time [sec.]		
т	п	(n_1, n_2, \ldots, n_p)	ALPN	SDPT3
1400	1500	(3, 3, , 3)	177.3	366.6
1700	1800	$(3, 3, \ldots, 3)$	260.4	638.4
2000	2100	(3,3,,3)	363.4	970.0

Table of contents

1. SOCP: Second-order cone optimization problem

2. LP-Newton method for LP

3. Extension of LP-Newton method to SOCP

4. Numerical results

5. Concluding remarks

Concluding remarks

Contribution

- Proposed adaptive LP-Newton method for solving SOCP
- Used polyhedral approximation of SOC via semi-infinite representation
- Quickly solved instances with "low-dim" SOCs and many linear constr

Future work

- Efficient computation of the projection
- Complexity analysis

Preprint

T. Okuno and M. Tanaka: Extension of the LP-Newton method to SOCPs via semi-infinite representation, arXiv:1902.01004.

Thank you for your attention

References I

Fujishige, S., Hayashi, T., Yamashita, K., and Zimmermann, U. (2009).
Zonotopes and the LP-Newton method.
Optimization and Engineering, 10:193–205.

Hayashi, S., Okuno, T., and Ito, Y. (2016). Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation. Optimization Methods and Software, 31:1272–1297.

Kitahara, T., Mizuno, S., and Shi, J. (2013). The LP-Newton method for standard form linear programming problems. Operations Research Letters, 41:426–429.

Kitahara, T. and Sukegawa, N. (2019).
A simple projection algorithm for linear programming problems.
Algorithmica, 81:167–178.

References II

Kitahara, T. and Tsuchiya, T. (2018).

An extension of Chubanov's polynomial-time linear programming algorithm to second-order cone programming. *Optimization Methods and Software*, 33:1–25.

Monteiro, R. D. C. and Tsuchiya, T. (2000).

Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. *Mathematical Programming*, 88:61–83.

Muramatsu, M. (2006).

A pivoting procedure for a class of second-order cone programming. *Optimization Methods and Software*, 21:295–315.

Okuno, T. and Tanaka, M. (2019). Extension of the LP-Newton method to SOCPs via semi-infinite representation. arXiv:1902.01004.

References III

Silvestri, F. and Reinelt, G. (2017).

The LP-Newton method and conic optimization. arXiv:1611.09260v2.

Wilhelmsen, D. R. (1976).

A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation.

Mathematics of Computation, 30:48-57.

📕 Wolfe, P. (1976).

Finding the nearest point in a polytope. *Mathematical Programming*, 11:128–149.