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Gas Physics and Transport à la Hoppmann

I Gas transport network can be modelled as flow network

I Gas is inserted at entries and withdrawn at exits

I Transport and trading decoupled ⇒ Volatile supplies and demands

I Supply and demand are balanced within 24h

I Gas travels slow (approximately 15 - 20 km/h)

I Gas can be stored in pipelines

I Gas flows from high pressure to low pressure

I Pressure loss while flowing through a pipe mainly due to friction

I Compressors can increase pressure

I Regulators can decrease pressure

I Valves can change network topology
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The NAVI - Problem Description

Project Goal

I Short-term transient gas network operation
of large-scale real-world networks

I “Navigation system” for dispatchers

This figure is omitted due to missing copy-
rights.

Problem

Given

I Network topology

I Initial network state

I Short-term supply/demand
situation, e.g. 12–24 hours

Goal

I Control each element s.t. the
network is operated “best”
(What does best mean?)
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Sample Gas Grid
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Sample Gas Grid - Navi Stations

Kai Hoppmann Optimal Operation of Macroscopic Gas Transport Networks Over Time 4 / 28



Basic Algorithmic Framework

1. Simplify navi stations

2. Optional further network simplifications:

I Merge pipes (parallel, sequential)
I Remove distribution network parts
I . . .

3. Solve transient operation problem using linearized gas flow equations
(Netmodel-Algorithm)

4. Result: For the boundaries of the navi stations

I Pressure values for all timesteps
I Flow values for all timesteps

5. Solve transient operation problem for original navi stations
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Pipes

This figure is omitted due to missing copyrights.

Gasflow in a pipe (u, v) between timesteps ti and ti+1 can be described by

pu,ti+1 + pv ,ti+1

2
− pu,ti + pv ,ti

2
+

Rs T z ∆t

LA

(
qv ,ti+1 − qu,ti+1

)
= 0

λRs T z L

4A2 D

(
|qu,ti | qu,ti

pu,ti

+
|qv ,ti | qv ,ti

pv ,ti

)
+

g s L

2Rs T z
(pu,ti + pv ,ti ) + pv ,ti − pu,ti = 0
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Simplifying Navi Stations
I Navi stations are bounded by fence nodes

I Elements between fence nodes are removed
I Fence nodes with similar “behaviour” are grouped into fence groups
I Nodes in a fence group are merged into a single nodes
I Auxiliary nodes (for modelling purposes) may be introduced
I Auxiliary links represent the capabilities of a navi station
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Flow Directions and Simple States

For each navi station (V ,A) we are given

I Flow directions F ⊆ P(V )× P(V ) with f = (f +, f −) ∈ F
I Simple states S ⊆ P(F)× P(A)× P(A) with s = (sf , s

on
a , soff

a ) ∈ S

∑
f ∈Fi

xf ,t = 1 ∀t ∈ T∑
f ∈s f

xf ,t ≥ xs,t ∀s ∈ Si , ∀t ∈ T∑
s∈Si

xs,t = 1 ∀t ∈ T

xs,t ≤ xa,t ∀s ∈ Si , ∀a ∈ sm, ∀t ∈ T

1− xs,t ≥ xa,t ∀s ∈ Si , ∀a ∈ Ai \ (s f ∪ so), ∀t ∈ T
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Example I
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Example II
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Flow Directions and Simple States

For each navi station (V ,A) we are given
I Flow directions F ⊆ P(V )× P(Vi ) (example: (f +, f −))
I Simple states S ⊆ P(F)× P(A)× P(A) (example: (sf , s

on
a , soff

a ))
I xf ,t ∈ {0, 1} for flow direction f ∈ F and time t ∈ T
I xs,t ∈ {0, 1} for simple state s ∈ S and time t ∈ T
I xa,t ∈ {0, 1} for auxiliary arc a ∈ A and time t ∈ T∑

f ∈F
xf ,t = 1 ∀t ∈ T∑

f ∈sf

xf ,t ≥ xs,t ∀s ∈ S, ∀t ∈ T∑
s∈S

xs,t = 1 ∀t ∈ T

xs,t ≤ xa,t ∀s ∈ S , ∀a ∈ son
a , ∀t ∈ T

1− xs,t ≥ xa,t ∀s ∈ S , ∀a ∈ soff
a , ∀t ∈ T

... flow direction constraints ...
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Shortcuts

For a shortcut a = (u, v) and each t ∈ T :

Not Active (xa,t = 0):

I Decoupled pressure values

I No flow allowed

Active (xa,t = 1):

I Coupled pressure values

I Bidirectional flow up to an amount of qa (Big-M).

pu,t − pv ,t ≤ (1− xa,t)(pv − p
u
)

pu,t − pv ,t ≥ (1− xa,t)(p
v
− pu)

q→a,t ≤ xa,tqa

q←a,t ≤ xa,tqa.
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Regulating Arcs

For a regulating arc a = (u, v) and each t ∈ T :

Not Active (xa,t = 0):

I Decoupled pressure values

I No flow allowed

Active (xa,t = 1):

I Pressure at u not smaller than pressure at v

I Unidirectional flow up to an amount of qa (Big-M).

pu,t − pv ,t ≥ (1− xa,t)(p
v
− pu)

q→a,t ≤ xa,tqa.
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Compressing Arcs

Not Active (xa,t = 0):

I No machine assigned

I Decoupled pressure values

I No flow allowed

Active (xa,t = 1):

I Assign machines to compressing arc

I Pressure at v not smaller than pressure at u

I Pressure at v at most ra times greater than pu,0

I Flow limited by sum of max flows of assigned machines

I Respect approximated power bound equation
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Compressing Arcs - MIP Model

For each machine i ∈ M and for each timestep t ∈ T we have∑
a∈A:i∈Ma

y i
a,t ≤ 1

y i
a,t ≤ xa,t

For each compressing arc a and for each timestep t ∈ T we have

q→a,t ≤
∑

i∈Ma
F iy i

a,t

ra,t = 1 +
∑

i∈Ma
(1− R i )y i

a,t

πa,t ≤
∑

i∈Ma
P iy i

a,t

pu,t − pv ,t ≤ (1− xa,t)(pv − p
u
)

rapu,0 − pv ,t ≥ (1− xa,t)(pu,0 − pv ,t)

α1pu,t + α2pv ,t + α3q
→
a,t + α4πa,t ≤ βxa,t + (1− xa,t)(α1pu

+ α2pv + α3qa)

α1pu,t + α2pv ,t + α3q
→
a,t + α4πa,t ≥ βxa,t + (1− xa,t)(α1pu + α2pv

+ α4πa)
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Combined Arcs

Not Active (xa,t = 0):

I No machine assigned

I Decoupled pressure values

I No flow allowed

Active (xa,t = 1):

I Assign machines to compressing arc (if compressing)

I Pressure at v at most ra times greater than pu,0

I Flow limited by sum of max flows of assigned machines

I Respect power bound approximation equation (if compressing)

Introduce binary variables x r
a,t , x

c
a,t ∈ {0, 1} indicating whether the arc is

regulating or compressing.

x r
a,t + xc

a,t = xa,t
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Connecting In- and Outside and Objective function

Flow conservation holds at all nodes in the network∑
ingoing flow−

∑
outgoing flow = bv ,t

where bv ,t = 0 for inner nodes, bv ,t ≥ 0 for entries, and bv ,t ≤ 0 for exits.

The (current) objective of Netmodel-MIP is to minimize the number of

1. flow direction changes,

2. simple state changes,

3. and auxiliary link switches.

Currently, we discuss to additionally penalize

I compressor/combined links being active

I and the power used for compression.
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3-Stage Approach

To avoid infeasibility, we have a 3-Stage Approach

1. Initial MIP

2. Stage 1 infeasible ⇒ add (expensive) slack on supplies/demands

3. Stage 2 infeasible ⇒ add (highly expensive) slack on pressure bounds

In theory the last MIP always admits a feasible solution.
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Netmodel-Algorithm

1: Solve MIP
2: if MIP is infeasible then
3: Add slack on supply/demands and resolve
4: if MIP is infeasible then
5: Add slack on pressure bounds and resolve

6: sol0 ← solution of MIP

7:

8: for i in 1 . . . k do
9: Determine average velocities using last min{i , j} solutions

10: Update momentum equations and solve MIP
11: if MIP is infeasible then
12: Add slack on supply/demands and resolve
13: if MIP is infeasible then
14: Add slack on pressure bounds and resolve
15: soli ← solution of MIP

16: Return pressure and flow values of fence group nodes in solk
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Subnetwork of Prototype
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The Last Slide

Thank you for your attention!
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