Linear Programming solvers: the state of the art

Julian Hall
School of Mathematics, University of Edinburgh
4th ISM-ZIB-IMI MODAL Workshop
Mathematical Optimization and Data Analysis

Tokyo
27 March 2019

Overview

- LP background
- Serial simplex
- Interior point methods
- Solvers
- Parallel simplex
- For structured LP problems
- For general LP problems
- A novel method

Solution of linear programming (LP) problems

$$
\text { minimize } f=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { subject to } A \boldsymbol{x}=\boldsymbol{b} \quad \boldsymbol{x} \geq \mathbf{0}
$$

Background

- Fundamental model in optimal decision-making
- Solution techniques
- Simplex method (1947)
- Interior point methods (1984)
- Novel methods
- Large problems have
- $10^{3}-10^{8}$ variables
- $10^{3}-10^{8}$ constraints
- Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Solving LP problems: Necessary and sufficient conditions for optimality

$$
\operatorname{minimize} \quad f=\boldsymbol{c}^{\top} \boldsymbol{x} \quad \text { subject to } A \boldsymbol{x}=\boldsymbol{b} \quad \boldsymbol{x} \geq \mathbf{0}
$$

Karush-Kuhn-Tucker (KKT) conditions

\boldsymbol{x}^{*} is an optimal solution \Longleftrightarrow there exist \boldsymbol{y}^{*} and \boldsymbol{s}^{*} such that

$$
\begin{array}{rlrl}
A \boldsymbol{x} & =\boldsymbol{b} & (1) & \boldsymbol{x} \geq \mathbf{0} \\
A^{T} \boldsymbol{y}+\boldsymbol{s} & =\boldsymbol{c}(3) & \boldsymbol{x}^{T} \boldsymbol{s}=0 \\
\mathbf{s} & 2 \tag{5}
\end{array}
$$

- For the simplex algorithm (1-2 and 5) always hold
- Primal simplex algorithm: (3) holds and the algorithm seeks to satisfy (4)
- Dual simplex algorithm: (4) holds and the algorithm seeks to satisfy (3)
- For interior point methods (1-4) hold and the method seeks to satisfy (5)

Solving LP problems: Characterizing the feasible region

minimize $f=\boldsymbol{c}^{\top} \boldsymbol{x} \quad$ subject to $A \boldsymbol{x}=\boldsymbol{b} \quad \boldsymbol{x} \geq \mathbf{0}$

- $A \in \mathbb{R}^{m \times n}$ is full rank
- Solution of $A \boldsymbol{x}=\boldsymbol{b}$ is a $n-m$ dim. hyperplane in \mathbb{R}^{n}
- Intersection with $\boldsymbol{x} \geq \mathbf{0}$ is the feasible region K
- A vertex of K has
- m basic components, $i \in \mathcal{B}$ given by $A \boldsymbol{x}=\boldsymbol{b}$
- $n-m$ zero nonbasic components, $j \in \mathcal{N}$
where $\mathcal{B} \cup \mathcal{N}$ partitions $\{1, \ldots, n\}$
- A solution of the LP occurs at a vertex of K

Solving LP problems: Optimality conditions at a vertex

$$
\text { minimize } f=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { subject to } A \boldsymbol{x}=\boldsymbol{b} \quad \boldsymbol{x} \geq \mathbf{0}
$$

Karush-Kuhn-Tucker (KKT) conditions
\boldsymbol{x}^{*} is an optimal solution \Longleftrightarrow there exist \boldsymbol{y}^{*} and \boldsymbol{s}^{*} such that

$$
\begin{align*}
& A \boldsymbol{x}=\boldsymbol{b}(1) \tag{5}\\
& A^{T} \boldsymbol{y}+\boldsymbol{s}=\boldsymbol{c} \tag{4}\\
&(2) \boldsymbol{s} \geq \mathbf{0} \tag{3}\\
& \mathbf{s}(3) \\
& \mathbf{0}
\end{align*}
$$

- Given $\mathcal{B} \cup \mathcal{N}$, partition A as $\left[\begin{array}{ll}B & N\end{array}\right], \boldsymbol{x}$ as $\left[\begin{array}{l}\boldsymbol{x}_{B} \\ \boldsymbol{x}_{N}\end{array}\right], \boldsymbol{c}$ as $\left[\begin{array}{l}\boldsymbol{c}_{B} \\ \boldsymbol{c}_{N}\end{array}\right]$ and \boldsymbol{s} as $\left[\begin{array}{l}\boldsymbol{s}_{B} \\ \boldsymbol{s}_{N}\end{array}\right]$
- If $\boldsymbol{x}_{N}=\mathbf{0}$ and $\boldsymbol{x}_{B}=\widehat{\boldsymbol{b}} \equiv B^{-1} \boldsymbol{b}$ then $B \boldsymbol{x}_{B}+N \boldsymbol{x}_{N}=\boldsymbol{b}$ so $A \boldsymbol{x}=\boldsymbol{b}$
- For (2)

$$
\left[\begin{array}{l}
B^{T} \\
N^{T}
\end{array}\right] \boldsymbol{y}+\left[\begin{array}{l}
\boldsymbol{s}_{B} \\
\boldsymbol{s}_{N}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{c}_{B} \\
\boldsymbol{c}_{N}
\end{array}\right]
$$

- If $\boldsymbol{y}=B^{-T} \boldsymbol{c}_{B}$ and $\boldsymbol{s}_{B}=\mathbf{0}$ then $B^{T} \boldsymbol{y}+\boldsymbol{s}_{B}=\boldsymbol{c}_{B}$
- If $\boldsymbol{s}_{N}=\widehat{\boldsymbol{c}}_{N} \equiv \boldsymbol{c}_{N}-N^{T} \boldsymbol{y}$ then (2) holds
- Finally, $\boldsymbol{x}^{T} \boldsymbol{s}=\boldsymbol{x}_{B}^{T} \boldsymbol{s}_{B}+\boldsymbol{x}_{N}^{T} \boldsymbol{s}_{N}=0$
- Need $\widehat{\boldsymbol{b}} \geq \mathbf{0}$ for (3) and $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$ for (4)

Solving LP problems: Simplex and interior point methods

Simplex method (1947)

- Given $\mathcal{B} \cup \mathcal{N}$ so (1-2 and 5) hold
- Primal simplex method

$$
\begin{align*}
& \text { Assume } \hat{\boldsymbol{b}} \geq \mathbf{0} \tag{3}\\
& \text { Force } \hat{\boldsymbol{c}}_{N} \geq \mathbf{0}
\end{align*}
$$

- Dual simplex method

$$
\begin{align*}
& \text { Assume } \hat{\boldsymbol{c}}_{N} \geq \mathbf{0} \tag{4}\\
& \text { Force } \hat{\boldsymbol{b}} \geq \mathbf{0} \tag{3}
\end{align*}
$$

- Modify $\mathcal{B} \cup \mathcal{N}$
- Combinatorial approach
- Cost $O\left(2^{n}\right)$ iterations Practically: $O(m+n)$ iterations

Interior point method (1984)

- Replace $\boldsymbol{x} \geq 0$ by log barrier
- Solve
$\begin{aligned} \text { maximize } & f=\boldsymbol{c}^{T} \boldsymbol{x}+\mu \sum_{j=1}^{n} \ln \left(x_{j}\right) \\ \text { subject to } & A \boldsymbol{x}=\boldsymbol{b}\end{aligned}$
- KKT (5) changes:

Replace $\boldsymbol{x}^{\top} \boldsymbol{s}=0$ by $X S=\mu \boldsymbol{e}$
X and S have \boldsymbol{x} and \boldsymbol{s} on diagonal

- KKT (1-4) hold
- Satisfy (5) by forcing XS $=\mu \boldsymbol{e}$ as $\mu \rightarrow 0$
- Iterative approach
- Practically: $O(\sqrt{n})$ iterations

Simplex method

The simplex algorithm: Definition

At a feasible vertex $\boldsymbol{x}=\left[\begin{array}{l}\hat{\boldsymbol{b}} \\ \mathbf{0}\end{array}\right]$ corresponding to $\mathcal{B} \cup \mathcal{N}$
(1) If $\widehat{\boldsymbol{c}}_{N} \geq 0$ then stop: the solution is optimal
(2) Scan $\widehat{c}_{j}<0$ for q to leave \mathcal{N}
(3) Let $\widehat{\mathbf{a}}_{q}=B^{-1} N \boldsymbol{e}_{q}$ and $\boldsymbol{d}=\left[\begin{array}{c}-\widehat{\mathbf{a}}_{q} \\ \boldsymbol{e}_{q}\end{array}\right]$
(9) Scan $\widehat{b}_{i} / \widehat{a}_{i q}>0$ for α and p to leave \mathcal{B}
(5) Exchange p and q between \mathcal{B} and \mathcal{N}
(0) Go to 1

Primal simplex algorithm: Choose a column

Assume $\widehat{\boldsymbol{b}} \geq \mathbf{0} \quad$ Seek $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$
 Scan $\widehat{c}_{i}<0$ for q to leave \mathcal{N}

$\left.\begin{array}{|l|l|l|l|}\hline & & \mathcal{N} & \text { RHS } \\ \hline \mathcal{B} & & & \\ & & & \\ \hline & & \widehat{c}_{q} & \widehat{\boldsymbol{c}}_{N}^{T}\end{array}\right]$

Primal simplex algorithm: Choose a row

Assume $\widehat{\boldsymbol{b}} \geq \mathbf{0} \quad$ Seek $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$
Scan $\widehat{c}_{j}<0$ for q to leave \mathcal{N}
Scan $\widehat{b}_{i} / \widehat{a}_{i q}>0$ for p to leave \mathcal{B}

	\mathcal{N}	RHS
\mathcal{B}	$\widehat{\boldsymbol{a}}_{q}$	
$\widehat{a}_{p q}$	$\widehat{\boldsymbol{b}}$	
		\widehat{b}_{p}

Primal simplex algorithm: Update cost and RHS

Assume $\widehat{\boldsymbol{b}} \geq \mathbf{0} \quad$ Seek $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$
Scan $\widehat{c}_{j}<0$ for q to leave \mathcal{N}
Scan $\widehat{b}_{i} / \widehat{a}_{i q}>0$ for p to leave \mathcal{B}
Update: Exchange p and q between \mathcal{B} and \mathcal{N}

$$
\begin{array}{ll}
\text { Update } \widehat{\boldsymbol{b}}:=\widehat{\boldsymbol{b}}-\alpha_{P} \widehat{\boldsymbol{a}}_{q} & \alpha_{P}=\widehat{b}_{p} / \widehat{a}_{p q} \\
\text { Update } \widehat{\boldsymbol{c}}_{N}^{T}:=\widehat{\boldsymbol{c}}_{N}^{T}+\alpha_{D} \widehat{\boldsymbol{a}}_{p}^{T} & \alpha_{D}=-\widehat{c}_{q} / \widehat{a}_{p q}
\end{array}
$$

		\mathcal{N}	RHS
\mathcal{B}	$\widehat{\boldsymbol{a}}_{q}$		$\widehat{\boldsymbol{b}}$
	$\widehat{a}_{p q}$	$\widehat{\boldsymbol{a}}_{p}^{T}$	\widehat{b}_{p}
	\widehat{c}_{q}	$\widehat{\boldsymbol{c}}_{N}^{T}$	

Primal simplex algorithm: Data required

Assume $\widehat{\boldsymbol{b}} \geq \mathbf{0}$ Seek $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$
Scan $\widehat{c}_{j}<0$ for q to leave \mathcal{N}
Scan $\widehat{b}_{i} / \widehat{a}_{i q}>0$ for p to leave \mathcal{B}
Update: Exchange p and q between \mathcal{B} and \mathcal{N}
Update $\widehat{\boldsymbol{b}}:=\widehat{\boldsymbol{b}}-\alpha_{P} \widehat{\boldsymbol{a}}_{q} \quad \alpha_{P}=\widehat{b}_{p} / \widehat{a}_{p q}$
Update $\widehat{\boldsymbol{c}}_{N}^{T}:=\widehat{\boldsymbol{c}}_{N}^{T}+\alpha_{D} \widehat{\boldsymbol{a}}_{p}^{T} \quad \alpha_{D}=-\widehat{c}_{q} / \widehat{a}_{p q}$

		\mathcal{N}	RHS
\mathcal{B}	$\widehat{\boldsymbol{a}}_{q}$		$\widehat{\boldsymbol{b}}$
	$\widehat{a}_{p q}$	$\widehat{\boldsymbol{a}}_{p}^{T}$	\widehat{b}_{p}
		\widehat{c}_{q}	$\widehat{\boldsymbol{c}}_{N}^{T}$

Data required

- Pivotal row $\widehat{\mathbf{a}}_{p}^{T}=\boldsymbol{e}_{p}^{T} B^{-1} N$
- Pivotal column $\widehat{\boldsymbol{a}}_{q}=B^{-1} \boldsymbol{a}_{q}$

Primal simplex algorithm

Assume $\widehat{\boldsymbol{b}} \geq \mathbf{0}$ Seek $\widehat{\boldsymbol{c}}_{N} \geq \mathbf{0}$
Scan $\widehat{c}_{j}<0$ for q to leave \mathcal{N}
Scan $\widehat{b}_{i} / \widehat{a}_{i q}>0$ for p to leave \mathcal{B}
Update: Exchange p and q between \mathcal{B} and \mathcal{N}
Update $\widehat{\boldsymbol{b}}:=\widehat{\boldsymbol{b}}-\alpha_{P} \widehat{\boldsymbol{a}}_{q} \quad \alpha_{P}=\widehat{b}_{p} / \widehat{a}_{p q}$
Update $\widehat{\boldsymbol{c}}_{N}^{T}:=\widehat{\boldsymbol{c}}_{N}^{T}+\alpha_{D} \widehat{\boldsymbol{a}}_{p}^{T} \quad \alpha_{D}=-\widehat{c}_{q} / \widehat{a}_{p q}$

		\mathcal{N}	RHS
\mathcal{B}	$\widehat{\boldsymbol{a}}_{q}$		$\widehat{\boldsymbol{b}}$
	$\widehat{a}_{p q}$	$\widehat{\boldsymbol{a}}_{p}^{T}$	\widehat{b}_{p}
	\widehat{c}_{q}	$\widehat{\boldsymbol{c}}_{N}^{T}$	

Data required

- Pivotal row $\widehat{\mathbf{a}}_{p}^{T}=\boldsymbol{e}_{p}^{T} B^{-1} N$
- Pivotal column $\widehat{\boldsymbol{a}}_{q}=B^{-1} \boldsymbol{a}_{q}$

Why does it work?

Objective improves by $-\frac{\widehat{b}_{p} \times \widehat{c}_{q}}{\widehat{a}_{p q}}$ each iteration

Simplex method: Computation

Standard simplex method (SSM): Major computational component

	\mathcal{N}	RHS
\mathcal{B}	\widehat{N}	$\widehat{\boldsymbol{b}}$
	$\widehat{\boldsymbol{c}}_{N}^{T}$	

Update of tableau: $\widehat{N}:=\widehat{N}-\frac{1}{\hat{a}_{p q}} \widehat{\mathbf{a}}_{q} \widehat{\mathbf{a}}_{p}^{T}$ where $\widehat{N}=B^{-1} N$

- Hopelessly inefficient for sparse LP problems
- Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components
Pivotal row via $\quad B^{T} \boldsymbol{\pi}_{p}=\boldsymbol{e}_{p} \quad$ BTRAN and $\quad \hat{\mathbf{a}}_{p}^{T}=\boldsymbol{\pi}_{p}^{T} N \quad$ PRICE

Pivotal column via $B \widehat{\mathbf{a}}_{q}=\boldsymbol{a}_{q} \quad$ FTRAN Represent $B^{-1} \quad$ INVERT
Update B^{-1} exploiting $\bar{B}=B+\left(\boldsymbol{a}_{q}-B \boldsymbol{e}_{p}\right) \boldsymbol{e}_{p}^{T}$

Serial simplex: Hyper-sparsity

Serial simplex: Solve $B x=r$ for sparse r

- Given $B=L U$, solve

$$
L y=r ; \quad U x=y
$$

- In revised simplex method, \boldsymbol{r} is sparse: consequences?
- If B is irreducible then \boldsymbol{x} is full
- If B is highly reducible then \boldsymbol{x} can be sparse
- Phenomenon of hyper-sparsity
- Exploit it when forming \boldsymbol{x}
- Exploit it when using x

Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of $B \boldsymbol{x}=\boldsymbol{r}$
Optimal B for LP problem stair
B^{-1} has density of 58%, so $B^{-1} \boldsymbol{r}$ is typically dense

Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of $B \boldsymbol{x}=\boldsymbol{r}$

Optimal B for LP problem pds-02
B^{-1} has density of 0.52%, so $B^{-1} \boldsymbol{r}$ is typically sparse-when \boldsymbol{r} is sparse

Serial simplex: Hyper-sparsity

- Use solution of $L \boldsymbol{x}=\boldsymbol{b}$
- To illustrate the phenomenon of hyper-sparsity
- To demonstrate how to exploit hyper-sparsity
- Apply principles to other triangular solves in the simplex method

Serial simplex: Hyper-sparsity

Recall: Solve $L x=\boldsymbol{b}$ using
function $\operatorname{ftranL}(L, \boldsymbol{b}, \boldsymbol{x})$

$$
\begin{aligned}
& \boldsymbol{r}=\boldsymbol{b} \\
& \text { for all } j \in\{1, \ldots, m\} \text { do } \\
& \text { for all } i: L_{i j} \neq 0 \text { do } \\
& r_{i}=r_{i}-L_{i j} r_{j}
\end{aligned}
$$

When \boldsymbol{b} is sparse

- Inefficient until \boldsymbol{r} fills in

$$
x=r
$$

Serial simplex: Hyper-sparsity

Better: Check r_{j} for zero

```
function \(\operatorname{ftranL}(L, \boldsymbol{b}, \boldsymbol{x})\)
\(\boldsymbol{r}=\boldsymbol{b}\)
for all \(j \in\{1, \ldots, m\}\) do
    if \(r_{j} \neq 0\) then
            for all \(i: L_{i j} \neq 0\) do
                        \(r_{i}=r_{i}-L_{i j} r_{j}\)
\(x=r\)
```

When \boldsymbol{x} is sparse

- Few values of r_{j} are nonzero
- Check for zero dominates
- Requires more efficient identification of set \mathcal{X} of indices j such that $r_{j} \neq 0$

Gilbert and Peierls (1988)
H and McKinnon (1998-2005)

Serial simplex: Hyper-sparsity

Recall: major computational components

- FTRAN: Form $\widehat{\mathbf{a}}_{q}=B^{-1} \boldsymbol{a}_{q}$
- BTRAN: Form $\boldsymbol{\pi}_{p}=B^{-T} \boldsymbol{e}_{p}$
- PRICE: Form $\widehat{\boldsymbol{a}}_{p}^{T}=\boldsymbol{\pi}_{p}^{T} N$

BTRAN: Form $\boldsymbol{\pi}_{p}=B^{-T} \boldsymbol{e}_{p}$

- Transposed triangular solves
- $L^{T} \boldsymbol{x}=\boldsymbol{b}$ has $x_{i}=b_{i}-\boldsymbol{I}_{i}^{T} \boldsymbol{x}$
- Hyper-sparsity: $\boldsymbol{I}_{i}^{T} \boldsymbol{x}$ typically zero
- Also store L (and U) row-wise and use FTRAN code

PRICE: Form $\widehat{a}_{p}^{T}=\pi_{p}^{T} N$

- Hyper-sparsity: π_{p}^{T} is sparse
- Store N row-wise
- Form $\hat{\mathbf{a}}_{p}^{T}$ as a combination of rows of N for nonzeros in π_{p}^{T}

H and McKinnon (1998-2005)
COAP best paper prize (2005)

Interior point methods

Interior point methods: Traditional

Replace $\boldsymbol{x} \geq 0$ by log barrier function and solve

$$
\text { maximize } f=\boldsymbol{c}^{T} \boldsymbol{x}+\mu \sum_{j=1}^{n} \ln \left(x_{j}\right) \quad \text { such that } \quad A \boldsymbol{x}=\boldsymbol{b}
$$

- For small μ this has the same solution as the LP
- Solve for a decreasing sequence of values of μ, moving through interior of K
- Perform a small number of (expensive) iterations: each solves

$$
\left[\begin{array}{cc}
-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\Delta} \boldsymbol{x} \\
\boldsymbol{\Delta} \boldsymbol{y}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{f} \\
\boldsymbol{d}
\end{array}\right] \Longleftrightarrow G \boldsymbol{\Delta} \boldsymbol{y}=\boldsymbol{h}
$$

where $\boldsymbol{\Delta} \boldsymbol{x}$ and $\boldsymbol{\Delta} \boldsymbol{y}$ are steps in the primal and dual variables and $G=A \Theta A^{T}$

- Standard technique is to form the Cholesky decomposition $G=L L^{T}$ and perform triangular solves with L

Interior point methods: Traditional

Forming the Cholesky decomposition $G=L L^{T}$ and perform triangular solves with L

- $G=A \Theta A^{T}=\sum_{j} \theta_{j} \boldsymbol{a}_{j} \boldsymbol{a}_{j}^{T}$ is generally sparse

So long as dense columns of A are treated carefully

- Much effort has gone into developing efficient serial Cholesky codes
- Parallel codes exist: notably for (nested) block structured problems OOPS solved a QP with 10^{9} variables

Gondzio and Grothey (2006)

- Disadvantage: L can fill-in

Cholesky can be prohibitively expensive for large n

Interior point methods: Matrix-free

Alternative approach to Cholesky: solve $G \boldsymbol{\Delta} \boldsymbol{y}=\boldsymbol{h}$ using an iterative method

- Use preconditioned conjugate gradient method (PCG)
- For preconditioner, consider $G=\left[\begin{array}{ll}L_{11} & \\ L_{21} & I\end{array}\right]\left[\begin{array}{ll}D_{L} & \\ & S\end{array}\right]\left[\begin{array}{cc}L_{11}^{T} & L_{21}^{T} \\ & I\end{array}\right]$ where
- $L=\left[\begin{array}{l}L_{11} \\ L_{21}\end{array}\right]$ contains the first k columns of the Cholesky factor of G
- D_{L} is a diagonal matrix formed by the k largest pivots of G
- S is the Schur complement after k pivots
- Precondition $G \boldsymbol{\Delta} \boldsymbol{y}=\boldsymbol{h}$ using $P=\left[\begin{array}{ll}L_{11} & \\ L_{21} & I\end{array}\right]\left[\begin{array}{ll}D_{L} & \\ & D_{S}\end{array}\right]\left[\begin{array}{cc}L_{11}^{T} & L_{21}^{T} \\ & I\end{array}\right]$ where
- S_{D} is the diagonal of S
- Avoids computing S or even G !

Interior point methods: Matrix-free

- Can solve problems intractable using direct methods
- Only requires "oracle" returning $\boldsymbol{y}=A \boldsymbol{x}$

Gondzio et al. (2014)

- Matrix-free IPM beats first order methods on speed and reliability for
- ℓ_{1}-regularized sparse least-squares: $n=O\left(10^{12}\right)$
- ℓ_{1}-regularized logistic regression: $n=O\left(10^{4}-10^{7}\right)$
- How?
- Preconditioner P is diagonal
- $A \Theta A^{T}$ is near-diagonal!
- Says much about the "difficulty" of such problems!

Fountoulakis and Gondzio (2016)

- Disadvantage: Not useful for all problems!

Linear Programming solvers: software

Solvers

Commercial

- Xpress
- Mosek
- Gurobi
- SAS
- Cplex
- Matlab

Open-source

- Clp (COIN-OR) - Soplex (ZIB)
- HiGHS
- Glpk (GNU)
- Glop (Google)
- Lpsolve

Simplex solvers

Solver	Gurobi	Xpress	Clp	Cplex	Mosek
Time	1	1.0	1.9	1.9	5.1

Mittelmann (25 April 2018)

Solver	Clp	Mosek	SAS	HiGHS	Glop	Matlab	Soplex	Glpk	Lpsolve
Time	1	2.8	3.2	5.3	6.4	6.6	10.1	26	112

Interior point solvers

Solver	Mosek	bpmpd	SAS	Matlab	Clp
Time	1	2.6	3.5	3.6	9.7

Parallel simplex for structured LP problems

PIPS-S

Overview

- Written in C++ to solve stochastic MIP relaxations in parallel
- Dual simplex
- Based on NLA routines in Clp
- Product form update

Concept

- Exploit data parallelism due to block structure of LPs
- Distribute problem over processes

Paper: Lubin, H, Petra and Anitescu (2013)

- COIN-OR INFORMS 2013 Cup
- COAP best paper prize (2013)

PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

$$
\begin{aligned}
& \operatorname{minimize} \quad \boldsymbol{c}_{0}^{T} \boldsymbol{x}_{0}+\boldsymbol{c}_{1}^{T} \boldsymbol{x}_{1}+\boldsymbol{c}_{2}^{T} \boldsymbol{x}_{2}+\ldots+\boldsymbol{c}_{N}^{T} \boldsymbol{x}_{N} \\
& \text { subject to } \\
& A \boldsymbol{x}_{0}=\boldsymbol{b}_{0} \\
& T_{1} \boldsymbol{x}_{0}+W_{1} \boldsymbol{x}_{1}=\boldsymbol{b}_{1} \\
& T_{2} \boldsymbol{x}_{0}+W_{2} \boldsymbol{x}_{2}=\boldsymbol{b}_{2} \\
& \begin{array}{rllll}
T_{N} \boldsymbol{x}_{0} & & & +\quad W_{N} \boldsymbol{x}_{N} & =\boldsymbol{b}_{N} \\
\boldsymbol{x}_{0} \geq \mathbf{0} & \boldsymbol{x}_{1} \geq \mathbf{0} & \boldsymbol{x}_{2} \geq \mathbf{0} & \ldots & \boldsymbol{x}_{N} \geq \mathbf{0}
\end{array}
\end{aligned}
$$

- Variables $\boldsymbol{x}_{0} \in \mathbb{R}^{n_{0}}$ are first stage decisions
- Variables $\boldsymbol{x}_{i} \in \mathbb{R}^{n_{i}}$ for $i=1, \ldots, N$ are second stage decisions Each corresponds to a scenario which occurs with modelled probability
- The objective is the expected cost of the decisions
- In stochastic MIP problems, some/all decisions are discrete

PIPS-S: Stochastic MIP problems

- Power systems optimization project at Argonne
- Integer second-stage decisions
- Stochasticity from wind generation
- Solution via branch-and-bound
- Solve root using parallel IPM solver PIPS

Lubin, Petra et al. (2011)

- Solve nodes using parallel dual simplex solver PIPS-S

PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

$$
\begin{aligned}
& \text { minimize } \boldsymbol{c}_{1}^{\top} \boldsymbol{x}_{1}+\boldsymbol{c}_{2}^{\top} \boldsymbol{x}_{2}+\ldots+\boldsymbol{c}_{N}^{\top} \boldsymbol{x}_{N}+\boldsymbol{c}_{0}^{\top} \boldsymbol{x}_{0} \\
& \text { subject to } \\
& W_{2} x_{2} \\
& W_{N} \boldsymbol{x}_{N}+T_{N} \boldsymbol{x}_{0}=\boldsymbol{b}_{N} \\
& A \boldsymbol{x}_{0}=\boldsymbol{b}_{0} \\
& \begin{array}{lllll}
\boldsymbol{x}_{1} \geq \mathbf{0} & \boldsymbol{x}_{2} \geq \mathbf{0} & \ldots & \boldsymbol{x}_{N} \geq \mathbf{0} & \boldsymbol{x}_{0} \geq \mathbf{0}
\end{array}
\end{aligned}
$$

PIPS-S: Exploiting problem structure

- Inversion of the basis matrix B is key to revised simplex efficiency

$$
B=\left[\begin{array}{cccc}
W_{1}^{B} & & & T_{1}^{B} \\
& \ddots & & \vdots \\
& & W_{N}^{B} & T_{N}^{B} \\
& & & A^{B}
\end{array}\right]
$$

- W_{i}^{B} are columns corresponding to n_{i}^{B} basic variables in scenario i
$\bullet\left[\begin{array}{c}T_{1}^{B} \\ \vdots \\ T_{N}^{B} \\ A^{B}\end{array}\right]$
are columns corresponding to n_{0}^{B} basic first stage decisions

PIPS-S: Exploiting problem structure

- Inversion of the basis matrix B is key to revised simplex efficiency

$$
B=\left[\begin{array}{cccc}
W_{1}^{B} & & & T_{1}^{B} \\
& \ddots & & \vdots \\
& & W_{N}^{B} & T_{N}^{B} \\
& & & A^{B}
\end{array}\right]
$$

- B is nonsingular so
- W_{i}^{B} are "tall": full column rank
- [Wr $\left._{i}^{B} T_{i}^{B}\right]$ are "wide": full row rank
- A^{B} is "wide": full row rank
- Scope for parallel inversion is immediate and well known

PIPS-S: Exploiting problem structure

- Eliminate sub-diagonal entries in each W_{i}^{B} (independently)

- Apply elimination operations to each T_{i}^{B} (independently)
- Accumulate non-pivoted rows from the W_{i}^{B} with A^{B} and complete elimination

PIPS-S: Overview

Scope for parallelism

- Parallel Gaussian elimination yields block LU decomposition of B
- Scope for parallelism in block forward and block backward substitution
- Scope for parallelism in PRICE

Implementation

- Distribute problem data over processes
- Perform data-parallel BTRAN, FTRAN and PRICE over processes
- Used MPI

Lubin, H, Petra and Anitescu (2013) COIN-OR INFORMS 2013 Cup COAP best paper prize (2013)

PIPS-S: Results

On Fusion cluster: Performance relative to Clp

Dimension	Cores	Storm	SSN	UC12	UC24
$m+n=O\left(10^{6}\right)$	1	0.34	0.22	0.17	0.08
	32	8.5	6.5	2.4	0.7
$m+n=O\left(10^{7}\right)$	256	299	45	67	68

On Blue Gene

- Instance of UC12
- $m+n=O\left(10^{8}\right)$
- Requires 1 TB of RAM
- Runs from an advanced basis

Cores	Iterations	Time (h)	Iter/sec
1024	Exceeded execution time limit		
2048	82,638	6.14	3.74
4096	75,732	5.03	4.18
8192	86,439	4.67	5.14

Parallel simplex for general LP problems

HiGHS: Past (2011-2014)

Overview

- Written in C++ to study parallel simplex
- Dual simplex with standard algorithmic enhancements
- Efficient numerical linear algebra
- No interface or utilities

Concept

- High performance serial solver (hsol)
- Exploit limited task and data parallelism in standard dual RSM iterations (sip)
- Exploit greater task and data parallelism via minor iterations of dual SSM (pami) Huangfu and H

HiGHS: Single iteration parallelism with sip option

- Computational components appear sequential
- Each has highly-tuned sparsity-exploiting serial implementation
- Exploit "slack" in data dependencies

HiGHS: Single iteration parallelism with sip option

- Parallel PRICE to form $\hat{\mathbf{a}}_{p}^{T}=\pi_{p}^{T} N$
- Other computational components serial
- Overlap any independent calculations
- Only four worthwhile threads unless $n \gg m$ so PRICE dominates
- More than Bixby and Martin (2000)
- Better than Forrest (2012)

Huangfu and H (2014)

HiGHS: Clp vs HiGHS vs sip

Performance on spectrum of 30 significant LP test problems

- sip on 8 cores is 1.15 times faster than HiGHS
- HiGHS (sip on 8 cores) is 2.29 (2.64) times faster than Clp

HiGHS: Multiple iteration parallelism with pami option

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}(|\mathcal{P}| \ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form $\boldsymbol{\pi}_{\mathcal{P}}=B^{-T} \boldsymbol{e}_{\mathcal{P}}$
- Data-parallel PRICE to form $\widehat{\boldsymbol{a}}_{p}^{T}$ (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates Huangfu and H (2011-2014)
COAP best paper prize (2015)
MPC best paper prize (2018)

HiGHS: Performance and reliability

Extended testing using 159 test problems

- 98 Netlib
- 16 Kennington
- 4 Industrial
- 41 Mittelmann

Exclude 7 which are "hard"

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

- Dual simplex
- No presolve
- No crash

Ignore results for 82 LPs with minimum solution time below 0.1 s

HiGHS: Performance

HiGHS: Reliability

HiGHS: Impact

- pami ideas incorporated in FICO Xpress (Huangfu 2014)
- Xpress has been the fastest simplex solver for most of the past five years

HiGHS: an open-source high-performance linear optimizer

HiGHS: Present (2016-date)

Features

- Model management: Add/delete/modify problem data
- Interfaces

Presolve

- Presolve (and corresponding postsolve) has been implemented efficiently

Remove redundancies in the LP to reduce problem dimension
Galabova

Crash

- Dual simplex "triangular basis" crash
- Alternative crash techniques being studied

H and Galabova

Interior point method

- Reliable "Matrix-free" implementation: Solve normal equations iteratively

HiGHS: The team

What's in a name?

HigHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

- Julian Hall: Reader (1990-date)
- Ivet Galabova
- PhD (2016-date)
- Google (2018)

- Qi Huangfu
- PhD (2009-2013)
- FICO Xpress (2013-2018)
- MSc (2018-date)
- Lukas Schork: PhD (2015-2018)
- Michael Feldmeier: PhD (2018-date)

HigHS: Access

Availability

- Open source (MIT license)
- GitHub: ERGO-Code/HiGHS
- COIN-OR: Replacement for Clp?

(O) NTT
 "
 Google

Cargill
Weatherford

Interfaces

- Existing
- C+ HiGHS class
- Load from .mps
- Load from .lp
- OSI (almost!)
- SCIP (almost!)
- Prototypes
- Python
- FORTRAN
- GAMS
- Julia
- Planned
- AMPL
- MATLAB
- R

A novel method: Fast approximate solution of LP problems

Fast approximate solution of LP problems

- Aim: Get an approximate solution of an LP problem faster than simplex or interior point methods
- What for?
- Advanced start for the simplex method
- Fast approximate solution may be good enough!

"Idiot" crash (Forrest)

For $j=1, \ldots, n$ (repeatedly)
Solve $\min g_{j}(\delta)=\mu\left(c_{j}+\sum_{i=1}^{m} a_{i j} \lambda_{i}\right) \delta+\sum_{i=1}^{m}\left(r_{i}+a_{i j} \delta\right)^{2} \quad$ where $r_{i}=\boldsymbol{a}_{i}^{T} \boldsymbol{x}-b_{i}$
Set $\quad x_{j}:=\max \left(0, x_{j}+\delta\right)$
Modify μ and $\boldsymbol{\lambda}$ "intelligently" and hope that \boldsymbol{x} converges to something useful!

Idiot crash: Application to quadratic assignment problem linearizations

Results: Performance after (up to) 200 Idiot iterations

Model	Rows	Columns	Optimum	Residual	Objective	Error	Time
NUG05	210	225	50.00	9.4×10^{-9}	50.01	1.5×10^{-4}	0.04
NUG06	372	486	86.00	7.8×10^{-9}	86.01	1.2×10^{-4}	0.11
NUG07	602	931	148.00	7.9×10^{-9}	148.64	4.3×10^{-3}	0.25
NUG08	912	1613	203.50	7.0×10^{-9}	204.41	4.5×10^{-3}	0.47
NUG12	3192	8856	522.89	8.8×10^{-9}	523.86	1.8×10^{-3}	2.58
NUG15	6330	22275	1041.00	8.9×10^{-9}	1041.38	3.7×10^{-4}	5.13
NUG20	15240	72600	2182.00	7.5×10^{-9}	2183.03	4.7×10^{-4}	14.94
NUG30	52260	379350	4805.00	1.1×10^{-8}	4811.41	1.3×10^{-3}	82.28

- Solution of NUG30 intractable using simplex or IPM on the same machine
- Idiot crash consistently yields near-optimal solutions

Fast approximate solution of LP problems

Idiot crash: Performance

For a few problems, notably QAP linearizations, $\boldsymbol{x} \rightarrow \boldsymbol{x}^{c} \approx \boldsymbol{x}^{*}$

- No proof of near-optimality when $\boldsymbol{x}^{c} \approx \boldsymbol{x}^{*}$
- Great advanced start for simplex (Clp)

Future aims

- Apply to dual LP to give confidence interval for $\boldsymbol{x}^{c} \approx \boldsymbol{x}^{*}$
- Aim to develop more successful algorithms for fast approximate solution of LPs

Conclusions

- LP solvers crucial to decision-making
- Classical methods very highly developed
- Look for alternative algorithms for fast (approximate) solution of LPs

Slides:

http://www.maths.ed.ac.uk/hall/Tokyo19

Code:

https://github.com/ERGO-Code/HiGHS
I. L. Galabova and J. A. J. Hall.

A quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems.
Technical Report ERGO-18-009, School of Mathematics, University of Edinburgh, 2018.
J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to exploit it.
Computational Optimization and Applications,
32(3):259-283, December 2005.
Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119-142, 2018.
M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu. Parallel distributed-memory simplex for large-scale stochastic LP problems.
Computational Optimization and Applications, 55(3):571-596, 2013.
L. Schork and J. Gondzio.

Implementation of an interior point method with basis preconditioning.
Technical Report ERGO-18-014, School of Mathematics, University of Edinburgh, 2018.

