
Linear Programming solvers: the state of the art

Julian Hall

School of Mathematics, University of Edinburgh

4th ISM-ZIB-IMI MODAL Workshop
Mathematical Optimization and Data Analysis

Tokyo

27 March 2019

Overview

LP background

Serial simplex

Interior point methods

Solvers

Parallel simplex

For structured LP problems
For general LP problems

A novel method

Julian Hall Linear Programming solvers: the state of the art 2 / 59

Solution of linear programming (LP) problems

minimize f = cTx subject to Ax = b x ≥ 0

Background

Fundamental model in optimal
decision-making

Solution techniques

◦ Simplex method (1947)
◦ Interior point methods (1984)
◦ Novel methods

Large problems have

◦ 103–108 variables
◦ 103–108 constraints

Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Julian Hall Linear Programming solvers: the state of the art 3 / 59

Solving LP problems: Necessary and sufficient conditions for optimality

minimize f = cTx subject to Ax = b x ≥ 0

Karush-Kuhn-Tucker (KKT) conditions

x∗ is an optimal solution ⇐⇒ there exist y∗ and s∗ such that

Ax = b (1) x ≥ 0 (3) xT s = 0 (5)

ATy + s = c (2) s ≥ 0 (4)

For the simplex algorithm (1–2 and 5) always hold

Primal simplex algorithm: (3) holds and the algorithm seeks to satisfy (4)
Dual simplex algorithm: (4) holds and the algorithm seeks to satisfy (3)

For interior point methods (1–4) hold and the method seeks to satisfy (5)

Julian Hall Linear Programming solvers: the state of the art 4 / 59

Solving LP problems: Characterizing the feasible region

x2

x3

x1

K

minimize f = cTx subject to Ax = b x ≥ 0

A ∈ Rm×n is full rank

Solution of Ax = b is a n −m dim. hyperplane in Rn

Intersection with x ≥ 0 is the feasible region K

A vertex of K has

m basic components, i ∈ B given by Ax = b
n −m zero nonbasic components, j ∈ N

where B ∪N partitions {1, . . . , n}
A solution of the LP occurs at a vertex of K

Julian Hall Linear Programming solvers: the state of the art 5 / 59

Solving LP problems: Optimality conditions at a vertex

minimize f = cTx subject to Ax = b x ≥ 0

Karush-Kuhn-Tucker (KKT) conditions

x∗ is an optimal solution ⇐⇒ there exist y∗ and s∗ such that

Ax = b (1) x ≥ 0 (3) xT s = 0 (5)

ATy + s = c (2) s ≥ 0 (4)

Given B ∪N , partition A as
[
B N

]
, x as

[
xB

xN

]
, c as

[
cB

cN

]
and s as

[
sB

sN

]

If xN = 0 and xB = b̂ ≡ B−1b then BxB + NxN = b so Ax = b (1)

For (2)
[
BT

NT

]
y +

[
sB

sN

]
=

[
cB

cN

]
If y = B−TcB and sB = 0 then BTy + sB = cB

If sN = ĉN ≡ cN − NTy then (2) holds

Finally, xT s = xT
B sB + xT

N sN = 0 (5)

Need b̂ ≥ 0 for (3) and ĉN ≥ 0 for (4)
Julian Hall Linear Programming solvers: the state of the art 6 / 59

Solving LP problems: Simplex and interior point methods

Simplex method (1947)

Given B ∪N so (1–2 and 5) hold

Primal simplex method

Assume b̂ ≥ 0 (3)
Force ĉN ≥ 0 (4)

Dual simplex method

Assume ĉN ≥ 0 (4)

Force b̂ ≥ 0 (3)

Modify B ∪N
Combinatorial approach

Cost O(2n) iterations
Practically: O(m + n) iterations

Interior point method (1984)

Replace x ≥ 0 by log barrier

Solve

maximize f = cTx + µ

n∑

j=1

ln(xj)

subject to Ax = b
KKT (5) changes:

Replace xT s = 0 by XS = µe
X and S have x and s on diagonal

KKT (1–4) hold

Satisfy (5) by forcing XS = µe as
µ→ 0

Iterative approach

Practically: O(
√
n) iterations

Julian Hall Linear Programming solvers: the state of the art 7 / 59

Simplex method

The simplex algorithm: Definition

x+αd
x

x2

x3

x1

K

At a feasible vertex x =

[
b̂
0

]
corresponding to B ∪N

1 If ĉN ≥ 0 then stop: the solution is optimal

2 Scan ĉj < 0 for q to leave N

3 Let âq = B−1Neq and d =

[
−âq

eq

]

4 Scan b̂i/âiq > 0 for α and p to leave B
5 Exchange p and q between B and N
6 Go to 1

Julian Hall Linear Programming solvers: the state of the art 9 / 59

Primal simplex algorithm: Choose a column

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉi < 0 for q to leave N

RHS

ĉq ĉTN

N

B

Julian Hall Linear Programming solvers: the state of the art 10 / 59

Primal simplex algorithm: Choose a row

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq > 0 for p to leave B

RHS

âq

âpq b̂p

b̂

N

B

Julian Hall Linear Programming solvers: the state of the art 11 / 59

Primal simplex algorithm: Update cost and RHS

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq > 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Julian Hall Linear Programming solvers: the state of the art 12 / 59

Primal simplex algorithm: Data required

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq > 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N

Pivotal column âq = B−1aq

Julian Hall Linear Programming solvers: the state of the art 13 / 59

Primal simplex algorithm

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq > 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉT
N := ĉT

N + αD âT
p αD = −ĉq/âpq

Data required

Pivotal row âT
p = eT

p B
−1N

Pivotal column âq = B−1aq

Why does it work?

Objective improves by − b̂p × ĉq
âpq

each iteration

Why does it work?

Objective improves by − b̂p × ĉq
âpq

each iteration

Julian Hall Linear Programming solvers: the state of the art 14 / 59

Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âqâT

p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âT
p = πT

p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Update B−1 exploiting B̄ = B + (aq − Bep)eT
p UPDATE

Julian Hall Linear Programming solvers: the state of the art 15 / 59

Serial simplex: Hyper-sparsity

Serial simplex: Solve Bx = r for sparse r

Given B = LU, solve
Ly = r ; Ux = y

In revised simplex method, r is sparse: consequences?

If B is irreducible then x is full
If B is highly reducible then x can be sparse

Phenomenon of hyper-sparsity
Exploit it when forming x
Exploit it when using x

Julian Hall Linear Programming solvers: the state of the art 17 / 59

Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem stair B−1 has density of 58%, so B−1r is

typically dense

Julian Hall Linear Programming solvers: the state of the art 18 / 59

Serial simplex: Hyper-sparsity

Inverse of a sparse matrix and solution of Bx = r
Optimal B for LP problem pds-02 B−1 has density of 0.52%, so B−1r

is typically sparse—when r is sparse

Julian Hall Linear Programming solvers: the state of the art 19 / 59

Serial simplex: Hyper-sparsity

Use solution of Lx = b
To illustrate the phenomenon of hyper-sparsity
To demonstrate how to exploit hyper-sparsity

Apply principles to other triangular solves in the simplex method

Julian Hall Linear Programming solvers: the state of the art 20 / 59

Serial simplex: Hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

for all i : Lij 6= 0 do
ri = ri − Lij rj

x = r

When b is sparse

Inefficient until r fills in

Julian Hall Linear Programming solvers: the state of the art 21 / 59

Serial simplex: Hyper-sparsity

Better: Check rj for zero

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

if rj 6= 0 then
for all i : Lij 6= 0 do

ri = ri − Lij rj
x = r

When x is sparse

Few values of rj are nonzero

Check for zero dominates

Requires more efficient identification
of set X of indices j such that rj 6= 0

Gilbert and Peierls (1988)
H and McKinnon (1998–2005)

Julian Hall Linear Programming solvers: the state of the art 22 / 59

Serial simplex: Hyper-sparsity

Recall: major computational components

FTRAN: Form âq = B−1aq

BTRAN: Form πp = B−Tep

PRICE: Form âT
p = πT

p N

BTRAN: Form πp = B−Tep

Transposed triangular solves

LTx = b has xi = bi − lTi x
Hyper-sparsity: lTi x typically zero
Also store L (and U) row-wise and
use FTRAN code

PRICE: Form âT
p = πT

p N

Hyper-sparsity: πT
p is sparse

Store N row-wise

Form âT
p as a combination of

rows of N for nonzeros in πT
p

H and McKinnon (1998–2005)
COAP best paper prize (2005)

Julian Hall Linear Programming solvers: the state of the art 23 / 59

Interior point methods

Interior point methods: Traditional

Replace x ≥ 0 by log barrier function and solve

maximize f = cTx + µ

n∑

j=1

ln(xj) such that Ax = b

For small µ this has the same solution as the LP

Solve for a decreasing sequence of values of µ, moving through interior of K

Perform a small number of (expensive) iterations: each solves

[
−Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
f
d

]
⇐⇒ G∆y = h

where ∆x and ∆y are steps in the primal and dual variables and G = AΘAT

Standard technique is to form the Cholesky decomposition G = LLT and perform
triangular solves with L

Julian Hall Linear Programming solvers: the state of the art 25 / 59

Interior point methods: Traditional

Forming the Cholesky decomposition G = LLT and perform triangular solves with L

G = AΘAT =
∑

j

θjajaT
j is generally sparse

So long as dense columns of A are treated carefully

Much effort has gone into developing efficient serial Cholesky codes

Parallel codes exist: notably for (nested) block structured problems
OOPS solved a QP with 109 variables

Gondzio and Grothey (2006)

Disadvantage: L can fill-in
Cholesky can be prohibitively expensive for large n

Julian Hall Linear Programming solvers: the state of the art 26 / 59

Interior point methods: Matrix-free

Alternative approach to Cholesky: solve G∆y = h using an iterative method

Use preconditioned conjugate gradient method (PCG)

For preconditioner, consider G =

[
L11
L21 I

] [
DL

S

] [
LT11 LT21

I

]
where

L =

[
L11
L21

]
contains the first k columns of the Cholesky factor of G

DL is a diagonal matrix formed by the k largest pivots of G
S is the Schur complement after k pivots

Precondition G∆y = h using P =

[
L11
L21 I

] [
DL

DS

] [
LT11 LT21

I

]
where

SD is the diagonal of S
Avoids computing S or even G !

Gondzio (2009)

Julian Hall Linear Programming solvers: the state of the art 27 / 59

Interior point methods: Matrix-free

Can solve problems intractable using direct methods

Only requires “oracle” returning y = Ax
Gondzio et al. (2014)

Matrix-free IPM beats first order methods on speed and reliability for

`1-regularized sparse least-squares: n = O(1012)
`1-regularized logistic regression: n = O(104 − 107)

How?

Preconditioner P is diagonal
AΘAT is near-diagonal!

Says much about the “difficulty” of such problems!
Fountoulakis and Gondzio (2016)

Disadvantage: Not useful for all problems!

Julian Hall Linear Programming solvers: the state of the art 28 / 59

Linear Programming solvers: software

Solvers

Commercial

Xpress

Gurobi

Cplex

Mosek

SAS

Matlab

Open-source

Clp (COIN-OR)

HiGHS

Glop (Google)

Soplex (ZIB)

Glpk (GNU)

Lpsolve

Simplex solvers
Solver Gurobi Xpress Clp Cplex Mosek

Time 1 1.0 1.9 1.9 5.1
Mittelmann (25 April 2018)

Solver Clp Mosek SAS HiGHS Glop Matlab Soplex Glpk Lpsolve

Time 1 2.8 3.2 5.3 6.4 6.6 10.1 26 112

Interior point solvers
Solver Mosek bpmpd SAS Matlab Clp

Time 1 2.6 3.5 3.6 9.7

Julian Hall Linear Programming solvers: the state of the art 30 / 59

Parallel simplex for structured LP problems

PIPS-S

Overview

Written in C++ to solve stochastic MIP relaxations in parallel

Dual simplex

Based on NLA routines in Clp

Product form update

Concept

Exploit data parallelism due to block structure of LPs

Distribute problem over processes

Paper: Lubin, H, Petra and Anitescu (2013)

COIN-OR INFORMS 2013 Cup

COAP best paper prize (2013)

Julian Hall Linear Programming solvers: the state of the art 32 / 59

PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + . . . + cT

NxN

subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables x i ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete

Julian Hall Linear Programming solvers: the state of the art 33 / 59

PIPS-S: Stochastic MIP problems

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S

Julian Hall Linear Programming solvers: the state of the art 34 / 59

PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

minimize cT
1 x1 + cT

2 x2 + . . . + cT
NxN + cT

0 x0

subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0

Julian Hall Linear Programming solvers: the state of the art 35 / 59

PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =

W B
1 T B

1
. . .

...
W B

N T B
N

AB

W B
i are columns corresponding to nB

i basic variables in scenario i

T B
1
...

T B
N

AB

 are columns corresponding to nB

0 basic first stage decisions

.

Julian Hall Linear Programming solvers: the state of the art 36 / 59

PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =

W B
1 T B

1
. . .

...
W B

N T B
N

AB

B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known

.

Julian Hall Linear Programming solvers: the state of the art 37 / 59

PIPS-S: Exploiting problem structure

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination

Julian Hall Linear Programming solvers: the state of the art 38 / 59

PIPS-S: Overview

Scope for parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for parallelism in block forward and block backward substitution

Scope for parallelism in PRICE

Implementation

Distribute problem data over processes

Perform data-parallel BTRAN, FTRAN and PRICE over processes

Used MPI

Lubin, H, Petra and Anitescu (2013)
COIN-OR INFORMS 2013 Cup
COAP best paper prize (2013)

Julian Hall Linear Programming solvers: the state of the art 39 / 59

PIPS-S: Results

On Fusion cluster: Performance relative to Clp

Dimension Cores Storm SSN UC12 UC24

m + n = O(106)
1 0.34 0.22 0.17 0.08

32 8.5 6.5 2.4 0.7

m + n = O(107) 256 299 45 67 68

On Blue Gene

Instance of UC12

m + n = O(108)

Requires 1 TB of RAM

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14

Julian Hall Linear Programming solvers: the state of the art 40 / 59

Parallel simplex for general LP problems

HiGHS: Past (2011–2014)

Overview

Written in C++ to study parallel simplex

Dual simplex with standard algorithmic enhancements

Efficient numerical linear algebra

No interface or utilities

Concept

High performance serial solver (hsol)

Exploit limited task and data parallelism in standard dual RSM iterations (sip)

Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H

Julian Hall Linear Programming solvers: the state of the art 42 / 59

HiGHS: Single iteration parallelism with sip option

Computational components appear sequential

Each has highly-tuned sparsity-exploiting serial implementation

Exploit “slack” in data dependencies

Julian Hall Linear Programming solvers: the state of the art 43 / 59

HiGHS: Single iteration parallelism with sip option

Parallel PRICE to form âT
p = πT

p N

Other computational components
serial

Overlap any independent calculations

Only four worthwhile threads unless
n� m so PRICE dominates

More than Bixby and Martin (2000)

Better than Forrest (2012)

Huangfu and H (2014)

Julian Hall Linear Programming solvers: the state of the art 44 / 59

HiGHS: Clp vs HiGHS vs sip

1 2 3 4 5
0

20

40

60

80

100

Clp hsol sip (8 cores)

Performance on spectrum of 30 significant LP test problems

sip on 8 cores is 1.15 times faster than HiGHS

HiGHS (sip on 8 cores) is 2.29 (2.64) times faster than Clp

Julian Hall Linear Programming solvers: the state of the art 45 / 59

HiGHS: Multiple iteration parallelism with pami option

Perform standard dual simplex minor iterations for rows in set P (|P| � m)
Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−TeP
Data-parallel PRICE to form âT

p (as required)
Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014)
COAP best paper prize (2015)

MPC best paper prize (2018)
Julian Hall Linear Programming solvers: the state of the art 46 / 59

HiGHS: Performance and reliability

Extended testing using 159 test problems

98 Netlib

16 Kennington

4 Industrial

41 Mittelmann

Exclude 7 which are “hard”

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

Dual simplex

No presolve

No crash

Ignore results for 82 LPs with minimum solution time below 0.1s

Julian Hall Linear Programming solvers: the state of the art 47 / 59

http://plato.asu.edu/ftp/lpsimp.html

HiGHS: Performance

1 2 3 4 5
0

20

40

60

80

100

clp hsol pami8 cplex

Julian Hall Linear Programming solvers: the state of the art 48 / 59

HiGHS: Reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

clp hsol pami8 cplex

Julian Hall Linear Programming solvers: the state of the art 49 / 59

HiGHS: Impact

1 1.25 1.5 1.75 2
0

20

40

60

80

100

Cplex Xpress Xpress (8 cores)

pami ideas incorporated in FICO Xpress (Huangfu 2014)

Xpress has been the fastest simplex solver for most of the past five years

Julian Hall Linear Programming solvers: the state of the art 50 / 59

http://www.fico.com/en/blogs/analytics-optimization/the-algorithm-that-runs-the-world/

HiGHS: an open-source high-performance linear optimizer

HiGHS: Present (2016–date)

Features

Model management: Add/delete/modify problem data

Interfaces

Presolve

Presolve (and corresponding postsolve) has been implemented efficiently

Remove redundancies in the LP to reduce problem dimension Galabova

Crash

Dual simplex “triangular basis” crash

Alternative crash techniques being studied H and Galabova

Interior point method

Reliable “Matrix-free” implementation: Solve normal equations iteratively Schork

Julian Hall Linear Programming solvers: the state of the art 52 / 59

HiGHS: The team

What’s in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

Julian Hall: Reader (1990–date)

Ivet Galabova

PhD (2016–date)
Google (2018)

Qi Huangfu

PhD (2009–2013)
FICO Xpress (2013–2018)
MSc (2018–date)

Lukas Schork: PhD (2015–2018)

Michael Feldmeier: PhD (2018–date)

Julian Hall Linear Programming solvers: the state of the art 53 / 59

HiGHS: Access

Availability

Open source (MIT license)

GitHub: ERGO-Code/HiGHS

COIN-OR: Replacement for Clp?

Interfaces

Existing

C++ HiGHS class
Load from .mps

Load from .lp

OSI (almost!)
SCIP (almost!)

Prototypes

Python

FORTRAN

GAMS

Julia

Planned

AMPL

MATLAB

R

Julian Hall Linear Programming solvers: the state of the art 54 / 59

https://github.com/ERGO-Code/HiGHS

A novel method: Fast approximate solution of LP problems

Fast approximate solution of LP problems

Aim: Get an approximate solution of an LP problem faster than simplex or
interior point methods

What for?
Advanced start for the simplex method
Fast approximate solution may be good enough!

“Idiot” crash (Forrest)

For j = 1, . . . , n (repeatedly)

Solve min gj(δ) = µ(cj +
m∑

i=1

aijλi)δ +
m∑

i=1

(ri + aijδ)2 where ri = aT
i x − bi

Set xj := max(0, xj + δ)

Modify µ and λ “intelligently” and hope that x converges to something useful!

Julian Hall Linear Programming solvers: the state of the art 56 / 59

Idiot crash: Application to quadratic assignment problem linearizations

Results: Performance after (up to) 200 Idiot iterations

Model Rows Columns Optimum Residual Objective Error Time

nug05 210 225 50.00 9.4× 10−9 50.01 1.5× 10−4 0.04
nug06 372 486 86.00 7.8× 10−9 86.01 1.2× 10−4 0.11
nug07 602 931 148.00 7.9× 10−9 148.64 4.3× 10−3 0.25
nug08 912 1613 203.50 7.0× 10−9 204.41 4.5× 10−3 0.47
nug12 3192 8856 522.89 8.8× 10−9 523.86 1.8× 10−3 2.58
nug15 6330 22275 1041.00 8.9× 10−9 1041.38 3.7× 10−4 5.13
nug20 15240 72600 2182.00 7.5× 10−9 2183.03 4.7× 10−4 14.94
nug30 52260 379350 4805.00 1.1× 10−8 4811.41 1.3× 10−3 82.28

Solution of nug30 intractable using simplex or IPM on the same machine

Idiot crash consistently yields near-optimal solutions

Julian Hall Linear Programming solvers: the state of the art 57 / 59

Fast approximate solution of LP problems

Idiot crash: Performance

For a few problems, notably QAP linearizations, x → xc ≈ x∗

No proof of near-optimality when xc ≈ x∗

Great advanced start for simplex (Clp) H and Galabova (2018)

Future aims

Apply to dual LP to give confidence interval for xc ≈ x∗

Aim to develop more successful algorithms for fast approximate solution of LPs

Julian Hall Linear Programming solvers: the state of the art 58 / 59

To close

Conclusions

LP solvers crucial to decision-making

Classical methods very highly
developed

Look for alternative algorithms for fast
(approximate) solution of LPs

Slides:
http://www.maths.ed.ac.uk/hall/Tokyo19

Code:
https://github.com/ERGO-Code/HiGHS

I. L. Galabova and J. A. J. Hall.

A quadratic penalty algorithm for linear programming and
its application to linearizations of quadratic assignment
problems.
Technical Report ERGO-18-009, School of Mathematics,
University of Edinburgh, 2018.

J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to
exploit it.
Computational Optimization and Applications,
32(3):259–283, December 2005.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119–142,
2018.

M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.

Parallel distributed-memory simplex for large-scale
stochastic LP problems.
Computational Optimization and Applications,
55(3):571–596, 2013.

L. Schork and J. Gondzio.

Implementation of an interior point method with basis
preconditioning.
Technical Report ERGO-18-014, School of Mathematics,
University of Edinburgh, 2018.

Julian Hall Linear Programming solvers: the state of the art 59 / 59

http://www.maths.ed.ac.uk/hall/Tokyo19
https://github.com/ERGO-Code/HiGHS

