Linear Programming solvers: the state of the art

Julian Hall

School of Mathematics, University of Edinburgh

4th ISM-ZIB-IMI MODAL Workshop Mathematical Optimization and Data Analysis

Tokyo

27 March 2019

- LP background
- Serial simplex
- Interior point methods
- Solvers
- Parallel simplex
 - For structured LP problems
 - For general LP problems
- A novel method

Solution of linear programming (LP) problems

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

Background

- Fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point methods (1984)
 - Novel methods
- Large problems have
 - \circ 10³–10⁸ variables
 - \circ 10³–10⁸ constraints
- Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Solving LP problems: Necessary and sufficient conditions for optimality

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

Karush-Kuhn-Tucker (KKT) conditions

 \mathbf{x}^* is an optimal solution \iff there exist \mathbf{y}^* and \mathbf{s}^* such that $A\mathbf{x} = \mathbf{b}$ (1) $\mathbf{x} \ge \mathbf{0}$ (3) $\mathbf{x}^T\mathbf{s} = \mathbf{0}$ (5) $A^T\mathbf{y} + \mathbf{s} = \mathbf{c}$ (2) $\mathbf{s} \ge \mathbf{0}$ (4)

- For the simplex algorithm (1-2 and 5) always hold
 - Primal simplex algorithm: (3) holds and the algorithm seeks to satisfy (4)
 - Dual simplex algorithm: (4) holds and the algorithm seeks to satisfy (3)
- For interior point methods (1-4) hold and the method seeks to satisfy (5)

Solving LP problems: Characterizing the feasible region

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

- $A \in \mathbb{R}^{m \times n}$ is full rank
- Solution of $A\mathbf{x} = \mathbf{b}$ is a n m dim. hyperplane in \mathbb{R}^n
- Intersection with $x \ge 0$ is the **feasible region** K
- A vertex of K has
 - *m* **basic** components, $i \in \mathcal{B}$ given by $A\mathbf{x} = \mathbf{b}$
 - n-m zero **nonbasic** components, $j \in \mathcal{N}$

where $\mathcal{B} \cup \mathcal{N}$ partitions $\{1, \ldots, n\}$

• A solution of the LP occurs at a **vertex** of K

Solving LP problems: Optimality conditions at a vertex

minimize
$$f = c^T x$$
 subject to $Ax = b$ $x \ge 0$
Karush-Kuhn-Tucker (KKT) conditions
 x^* is an optimal solution \iff there exist y^* and s^* such that
 $Ax = b$ (1) $x \ge 0$ (3) $x^T s = 0$ (5)
 $A^T y + s = c$ (2) $s \ge 0$ (4)
• Given $\mathcal{B} \cup \mathcal{N}$, partition A as $\begin{bmatrix} B & N \end{bmatrix}$, x as $\begin{bmatrix} x_B \\ x_N \end{bmatrix}$, c as $\begin{bmatrix} c_B \\ c_N \end{bmatrix}$ and s as $\begin{bmatrix} s_B \\ s_N \end{bmatrix}$
• If $x_N = 0$ and $x_B = \hat{b} \equiv B^{-1}b$ then $Bx_B + Nx_N = b$ so $Ax = b$ (1)
• For (2)
 $\begin{bmatrix} B^T \\ N^T \end{bmatrix} y + \begin{bmatrix} s_B \\ s_N \end{bmatrix} = \begin{bmatrix} c_B \\ c_N \end{bmatrix}$
• If $s_N = \hat{c}_N \equiv c_N - N^T y$ then (2) holds
• Finally, $x^T s = x_B^T s_B + x_N^T s_N = 0$ (5)
• Need $\hat{b} \ge 0$ for (3) and $\hat{c}_N \ge 0$ for (4)

Solving LP problems: Simplex and interior point methods

Simplex method (1947)

- Given $\mathcal{B} \cup \mathcal{N}$ so (1–2 and 5) hold
- Primal simplex method Assume $\hat{\boldsymbol{b}} \ge \boldsymbol{0}$ (3) Force $\hat{\boldsymbol{c}}_{\scriptscriptstyle N} \ge \boldsymbol{0}$ (4)
- Dual simplex method Assume $\hat{c}_{\scriptscriptstyle N} \geq \mathbf{0}$ (4) Force $\hat{b} \geq \mathbf{0}$ (3)
- $\bullet \ \mathsf{Modify} \ \mathcal{B} \cup \mathcal{N}$
- Combinatorial approach
- Cost $O(2^n)$ iterations Practically: O(m + n) iterations

Interior point method (1984)

• Replace $x \ge 0$ by log barrier

• Solve maximize $f = c^T x + \mu \sum_{j=1}^n \ln(x_j)$ subject to Ax = b• KKT (5) changes: Replace $x^T s = 0$ by $XS = \mu e$ X and S have x and s on diagonal

- KKT (1–4) hold
- Satisfy (5) by forcing $XS = \mu e$ as $\mu \rightarrow 0$
- Iterative approach
- Practically: $O(\sqrt{n})$ iterations

Simplex method

The simplex algorithm: Definition

- At a feasible vertex $\mathbf{x} = \begin{bmatrix} \widehat{\mathbf{b}} \\ \mathbf{0} \end{bmatrix}$ corresponding to $\mathcal{B} \cup \mathcal{N}$ (a) If $\widehat{\mathbf{c}}_N \ge \mathbf{0}$ then stop: the solution is optimal (c) Scan $\widehat{c}_j < 0$ for q to leave \mathcal{N} (c) Let $\widehat{\mathbf{a}}_q = B^{-1}N\mathbf{e}_q$ and $\mathbf{d} = \begin{bmatrix} -\widehat{\mathbf{a}}_q \\ \mathbf{e}_q \end{bmatrix}$
 - Scan $\hat{b}_i/\hat{a}_{iq} > 0$ for α and p to leave \mathcal{B}
 - **(5)** Exchange p and q between \mathcal{B} and \mathcal{N}
 - 💿 Go to 1

Assume $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$

Scan $\widehat{c}_i < 0$ for q to leave \mathcal{N}

Assume $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0}$

 $\begin{array}{l} \text{Scan } \widehat{c}_j < 0 \text{ for } q \text{ to leave } \mathcal{N} \\ \text{Scan } \widehat{b}_i / \widehat{a}_{iq} > 0 \text{ for } p \text{ to leave } \mathcal{B} \end{array}$

Assume $\hat{\boldsymbol{b}} \geq \boldsymbol{0}$ Seek $\hat{\boldsymbol{c}}_N \geq \boldsymbol{0}$ Scan $\hat{c}_j < 0$ for \boldsymbol{q} to leave \mathcal{N} Scan $\hat{b}_i/\hat{a}_{iq} > 0$ for \boldsymbol{p} to leave \mathcal{B} Update: Exchange \boldsymbol{p} and \boldsymbol{q} between \mathcal{B} and \mathcal{N} Update $\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$ $\alpha_P = \hat{b}_p/\hat{a}_{pq}$ Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{c}_q/\hat{a}_{pq}$

Assume $\hat{b} \ge 0$ Seek $\hat{c}_N \ge 0$ Scan $\hat{c}_j < 0$ for q to leave \mathcal{N} Scan $\hat{b}_i / \hat{a}_{iq} > 0$ for p to leave \mathcal{B} Update: Exchange p and q between \mathcal{B} and \mathcal{N} Update: $\hat{b} := \hat{b} - \alpha_D \hat{a}$ $\alpha_D = \hat{b} / \hat{a}$

Update
$$\hat{\boldsymbol{c}}_{N}^{T} := \hat{\boldsymbol{c}}_{N}^{T} + \alpha_{D} \hat{\boldsymbol{a}}_{p}^{T}$$
 $\alpha_{D} = -\hat{c}_{q}/\hat{a}_{pq}$

Data required

• Pivotal row
$$\widehat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T} B^{-1} N$$

• Pivotal column
$$\widehat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q$$

 $\begin{array}{ll} \mathsf{Assume} \ \widehat{\boldsymbol{b}} \geq \boldsymbol{0} & \mathsf{Seek} \ \widehat{\boldsymbol{c}}_{\scriptscriptstyle N} \geq \boldsymbol{0} \\ \mathsf{Scan} \ \widehat{c}_{j} < 0 \ \mathsf{for} \ q \ \mathsf{to} \ \mathsf{leave} \ \mathcal{N} \\ \mathsf{Scan} \ \widehat{b}_{i} / \widehat{a}_{iq} > 0 \ \mathsf{for} \ p \ \mathsf{to} \ \mathsf{leave} \ \mathcal{B} \end{array}$

Update: Exchange *p* and *q* between \mathcal{B} and \mathcal{N} Update $\hat{\boldsymbol{b}} := \hat{\boldsymbol{b}} - \alpha_P \hat{\boldsymbol{a}}_q$ $\alpha_P = \hat{\boldsymbol{b}}_p / \hat{\boldsymbol{a}}_{pq}$ Update $\hat{\boldsymbol{c}}_N^T := \hat{\boldsymbol{c}}_N^T + \alpha_D \hat{\boldsymbol{a}}_p^T$ $\alpha_D = -\hat{\boldsymbol{c}}_q / \hat{\boldsymbol{a}}_{pq}$

Data required

• Pivotal row
$$\hat{\boldsymbol{a}}_{p}^{T} = \boldsymbol{e}_{p}^{T} B^{-1} N$$

• Pivotal column
$$\widehat{\boldsymbol{a}}_q = B^{-1} \boldsymbol{a}_q$$

Why does it work?

Objective improves by
$$-rac{\widehat{b}_{p} imes \widehat{c}_{q}}{\widehat{a}_{pq}}$$
 each iteration

Simplex method: Computation

Standard simplex method (SSM): Major computational component

Update of tableau:
$$\widehat{N}:=\widehat{N}-rac{1}{\widehat{a}_{pq}}\widehat{a}_{q}\widehat{a}_{p}^{T}$$

where $\widehat{N}=B^{-1}N$

• Hopelessly inefficient for sparse LP problems

• Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via $B^T \pi_p = e_p$ BTRANand $\widehat{a}_p^T = \pi_p^T N$ PRICEPivotal column via $B \, \widehat{a}_q = a_q$ FTRANRepresent B^{-1} INVERTUpdate B^{-1} exploiting $\overline{B} = B + (a_q - Be_p)e_p^T$ UPDATE

Serial simplex: Hyper-sparsity

• Given B = LU, solve

$$L\mathbf{y} = \mathbf{r}; \quad U\mathbf{x} = \mathbf{y}$$

- In revised simplex method, *r* is sparse: consequences?
 - If B is irreducible then x is full
 - If B is highly reducible then x can be sparse
- Phenomenon of hyper-sparsity
 - Exploit it when forming x
 - Exploit it when using x

Inverse of a sparse matrix and solution of $B\mathbf{x} = \mathbf{r}$

Optimal B for LP problem stair

B^{-1} has density of 58%, so $B^{-1} {\it r}$ is typically dense

Inverse of a sparse matrix and solution of $B\mathbf{x} = \mathbf{r}$

Optimal B for LP problem pds-02

 B^{-1} has density of 0.52%, so $B^{-1}r$ is typically sparse—when r is sparse

- Use solution of $L \mathbf{x} = \mathbf{b}$
 - To illustrate the phenomenon of hyper-sparsity
 - To demonstrate how to exploit hyper-sparsity
- Apply principles to other triangular solves in the simplex method

Recall: Solve Lx = b using

function ftranL(L, b, x)

$$r = b$$

for all $j \in \{1, ..., m\}$ do
for all $i : L_{ij} \neq 0$ do
 $r_i = r_i - L_{ij}r_j$
 $x = r$

When **b** is **sparse**

• Inefficient until r fills in

Better: Check r_j for zero

$$\begin{array}{l} \textbf{function ftranL}(L, \ \textbf{b}, \ \textbf{x}) \\ \textbf{r} = \textbf{b} \\ \textbf{for all } j \in \{1, \dots, m\} \ \textbf{do} \\ \textbf{if } r_j \neq 0 \ \textbf{then} \\ \textbf{for all } i : L_{ij} \neq 0 \ \textbf{do} \\ r_i = r_i - L_{ij}r_j \\ \textbf{x} = \textbf{r} \end{array}$$

When *x* is **sparse**

- Few values of r_j are nonzero
- Check for zero dominates
- Requires more efficient identification of set X of indices j such that r_j ≠ 0

Gilbert and Peierls (1988) H and McKinnon (1998–2005)

Serial simplex: Hyper-sparsity

Recall: major computational components

- FTRAN: Form $\widehat{a}_q = B^{-1} a_q$
- BTRAN: Form $\pi_p = B^{-T} \boldsymbol{e}_p$
- **PRICE**: Form $\widehat{\boldsymbol{a}}_p^T = \pi_p^T N$

BTRAN: Form $\pi_p = B^{-T} \boldsymbol{e}_p$

• Transposed triangular solves

•
$$L^T \mathbf{x} = \mathbf{b}$$
 has $x_i = b_i - \mathbf{I}_i^T \mathbf{x}$

- Hyper-sparsity: $I_i^T x$ typically zero
- Also store *L* (and *U*) row-wise and use FTRAN code

PRICE: Form $\widehat{\boldsymbol{a}}_p^T = \pi_p^T N$

- Hyper-sparsity: π_p^T is sparse
- Store N row-wise
- Form *a*^T_p as a combination of rows of N for nonzeros in π^T_p

H and McKinnon (1998–2005) COAP best paper prize (2005) Interior point methods

Interior point methods: Traditional

Replace $x \ge 0$ by **log barrier** function and solve

maximize
$$f = \boldsymbol{c}^T \boldsymbol{x} + \mu \sum_{j=1}^n \ln(x_j)$$
 such that $A\boldsymbol{x} = \boldsymbol{b}$

- For small μ this has the same solution as the LP
- Solve for a decreasing sequence of values of μ , moving through *interior* of K
- Perform a small number of (expensive) iterations: each solves

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ d \end{bmatrix} \iff G \Delta y = h$$

where Δx and Δy are steps in the primal and dual variables and $G = A \Theta A^T$

• Standard technique is to form the **Cholesky** decomposition $G = LL^T$ and perform triangular solves with L

Forming the **Cholesky** decomposition $G = LL^T$ and perform triangular solves with L

•
$$G = A \Theta A^T = \sum_{j} \theta_j \boldsymbol{a}_j \boldsymbol{a}_j^T$$
 is generally sparse

So long as dense columns of A are treated carefully

- Much effort has gone into developing efficient serial Cholesky codes
- Parallel codes exist: notably for (nested) block structured problems
 OOPS solved a QP with 10⁹ variables

Gondzio and Grothey (2006)

• **Disadvantage:** *L* can fill-in Cholesky can be prohibitively expensive for large *n* Alternative approach to Cholesky: solve $G\Delta y = h$ using an **iterative** method

• Use preconditioned conjugate gradient method (PCG)

• For preconditioner, consider
$$G = \begin{bmatrix} L_{11} \\ L_{21} \end{bmatrix} \begin{bmatrix} D_L \\ S \end{bmatrix} \begin{bmatrix} L_{11}^T & L_{21}^T \\ I \end{bmatrix}$$
 where

- $L = \begin{bmatrix} L_{11} \\ L_{21} \end{bmatrix}$ contains the first k columns of the Cholesky factor of G
- D_L is a diagonal matrix formed by the k largest pivots of G
- S is the Schur complement after k pivots

• Precondition
$$G \Delta y = h$$
 using $P = \begin{bmatrix} L_{11} \\ L_{21} \end{bmatrix} \begin{bmatrix} D_L \\ D_S \end{bmatrix} \begin{bmatrix} L_{11}^T & L_{21}^T \\ I \end{bmatrix}$ where

- S_D is the diagonal of S
- Avoids computing S or even G!

Gondzio (2009)

Interior point methods: Matrix-free

- Can solve problems intractable using direct methods
- Only requires "oracle" returning **y** = A**x**

Gondzio et al. (2014)

- Matrix-free IPM beats first order methods on speed and reliability for
 - ℓ_1 -regularized sparse least-squares: $n = O(10^{12})$
 - ℓ_1 -regularized logistic regression: $n = O(10^4 10^7)$
- How?
 - Preconditioner P is diagonal
 - $A \Theta A^T$ is near-diagonal!
- Says much about the "difficulty" of such problems!

Fountoulakis and Gondzio (2016)

• Disadvantage: Not useful for all problems!

Linear Programming solvers: software

Commercial				Open-source						
Xpress		• Mosek		• Clp (COIN-OR)			 Soplex (ZIB) 			
• Gurobi		• SAS		• HiGHS			• Glpk (GNU)			
• Cplex		• Matlab		• G	• Glop (Google)		• Lpsolve			
· ·			Clp Cplex Mosek			Mittelmann (25 April 2018)				
Time		1	1.0	1.9	1.9	5.1				
	Clp	Mosek	SAS	HiGHS	Glop	Matlab	Soplex	Glpk	Lpsolve	
Solver	r			5.3	6.4	6.6	10.1	26	112	

Solver	Mosek	bpmpd	SAS	Matlab	Clp
Time	1	2.6	3.5	3.6	9.7

Parallel simplex for structured LP problems

PIPS-S

Overview

- Written in C++ to solve stochastic MIP relaxations in parallel
- Dual simplex
- Based on NLA routines in Clp
- Product form update

Concept

- Exploit data parallelism due to block structure of LPs
- Distribute problem over processes

Paper: Lubin, H, Petra and Anitescu (2013)

- COIN-OR INFORMS 2013 Cup
- COAP best paper prize (2013)

PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

• Variables $x_0 \in \mathbb{R}^{n_0}$ are first stage decisions

- Variables $\mathbf{x}_i \in \mathbb{R}^{n_i}$ for i = 1, ..., N are second stage decisions Each corresponds to a scenario which occurs with modelled probability
- The objective is the expected cost of the decisions
- In stochastic MIP problems, some/all decisions are discrete

- Power systems optimization project at Argonne
- Integer second-stage decisions
- Stochasticity from wind generation
- Solution via branch-and-bound
 - Solve root using parallel IPM solver PIPS

Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S

Convenient to permute the LP thus:

PIPS-S: Exploiting problem structure

• Inversion of the basis matrix B is key to revised simplex efficiency

$$B = \begin{bmatrix} W_{1}^{B} & & T_{1}^{B} \\ & \ddots & & \vdots \\ & & W_{N}^{B} & T_{N}^{B} \\ & & & A^{B} \end{bmatrix}$$

PIPS-S: Exploiting problem structure

• Inversion of the basis matrix B is key to revised simplex efficiency

- B is nonsingular so
 - W_i^B are "tall": full column rank
 - $\begin{bmatrix} W_i^B & T_i^B \end{bmatrix}$ are "wide": full row rank
 - $\tilde{A}^{\scriptscriptstyle B}$ is "wide": full row rank
- Scope for parallel inversion is immediate and well known

• Eliminate sub-diagonal entries in each W_i^B (independently)

• Apply elimination operations to each T_i^B (independently)

• Accumulate non-pivoted rows from the $W_i^{\scriptscriptstyle B}$ with $A^{\scriptscriptstyle B}$ and complete elimination

Scope for parallelism

- Parallel Gaussian elimination yields block LU decomposition of B
- Scope for parallelism in block forward and block backward substitution
- Scope for parallelism in PRICE

Implementation

- Distribute problem data over processes
- Perform data-parallel BTRAN, FTRAN and PRICE over processes
- Used MPI

Lubin, H, Petra and Anitescu (2013) COIN-OR INFORMS 2013 Cup COAP best paper prize (2013)

PIPS-S: Results

On Fusion cluster: Performance relative to C1p								
	Dimension	Cores	Storm	SSN	UC12	UC24		
	$m+n=O(10^6)$	1 32	0.34 8.5		0.17 2.4			
	$m+n=O(10^7)$	256	299	45	67	68		

On Blue Gene

- Instance of UC12
- $m + n = O(10^8)$
- Requires 1 TB of RAM
- Runs from an advanced basis

Cores	Iterations	Time (h)	Iter/sec
1024	Exceeded	execution t	ime limit
2048	82,638	6.14	3.74
4096	75,732	5.03	4.18
8192	86,439	4.67	5.14

Parallel simplex for general LP problems

Overview

- Written in C++ to study parallel simplex
- Dual simplex with standard algorithmic enhancements
- Efficient numerical linear algebra
- No interface or utilities

Concept

- High performance serial solver (hsol)
- Exploit limited task and data parallelism in standard dual RSM iterations (sip)
- Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H

HiGHS: Single iteration parallelism with sip option

- Computational components appear sequential
- Each has highly-tuned sparsity-exploiting serial implementation
- Exploit "slack" in data dependencies

HiGHS: Single iteration parallelism with sip option

• Parallel PRICE to form $\hat{\boldsymbol{a}}_{p}^{T}=\boldsymbol{\pi}_{p}^{T}\boldsymbol{N}$

- Other computational components serial
- Overlap any independent calculations
- Only four worthwhile threads unless $n \gg m$ so PRICE dominates
- More than Bixby and Martin (2000)
- Better than Forrest (2012)

Huangfu and H (2014)

HiGHS: Clp vs HiGHS vs sip

Performance on spectrum of 30 significant LP test problems

- sip on 8 cores is 1.15 times faster than HiGHS
- HiGHS (sip on 8 cores) is 2.29 (2.64) times faster than Clp

HiGHS: Multiple iteration parallelism with pami option

- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form ${m \pi}_{\mathcal P}=B^{-T}{m e}_{\mathcal P}$
- Data-parallel PRICE to form \widehat{a}_p^T (as required)
- Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014) COAP best paper prize (2015) MPC best paper prize (2018)

HiGHS: Performance and reliability

Extended testing using 159 test problems

- 98 Netlib
- 16 Kennington
- 4 Industrial
- 41 Mittelmann

Exclude 7 which are "hard"

Performance

Benchmark against clp (v1.16) and cplex (v12.5)

- Dual simplex
- No presolve
- No crash

Ignore results for 82 LPs with minimum solution time below 0.1s

HiGHS: Performance

HiGHS: Reliability

HiGHS: Impact

- pami ideas incorporated in FICO Xpress (Huangfu 2014)
- Xpress has been the fastest simplex solver for most of the past five years

HiGHS: an open-source high-performance linear optimizer

HiGHS: Present (2016-date)

Features

- Model management: Add/delete/modify problem data
- Interfaces

Presolve

• Presolve (and corresponding postsolve) has been implemented efficiently Remove redundancies in the LP to reduce problem dimension

Galabova

Crash

- Dual simplex "triangular basis" crash
- Alternative crash techniques being studied

H and Galabova

Interior point method

• Reliable "Matrix-free" implementation: Solve normal equations iteratively

HiGHS: The team

What's in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

- Julian Hall: Reader (1990-date)
- Ivet Galabova
 - PhD (2016-date)
 - Google (2018)
- Qi Huangfu
 - PhD (2009-2013)
 - FICO Xpress (2013-2018)
 - MSc (2018–date)
- Lukas Schork: PhD (2015-2018)
- Michael Feldmeier: PhD (2018-date)

HiGHS: Access

Availability

- Open source (MIT license)
- GitHub: ERGO-Code/HiGHS
- COIN-OR: Replacement for Clp?

Interfaces

- Existing
 - C++ HiGHS class
 - Load from .mps
 - Load from .lp
 - OSI (almost!)
 - SCIP (almost!)
- Prototypes
 - Python
 - FORTRAN
 - GAMS
 - Julia
- Planned
 - AMPL
 - MATLAB
 - R

A novel method: Fast approximate solution of LP problems

Fast approximate solution of LP problems

- Aim: Get an approximate solution of an LP problem faster than simplex or interior point methods
- What for?
 - Advanced start for the simplex method
 - Fast approximate solution may be good enough!

"Idiot" crash (Forrest)

For
$$j = 1, \ldots, n$$
 (repeatedly)

Solve
$$\min g_j(\delta) = \mu(c_j + \sum_{i=1}^m a_{ij}\lambda_i)\delta + \sum_{i=1}^m (r_i + a_{ij}\delta)^2$$
 where $r_i = a_i^T \mathbf{x} - b_i$
Set $x_j := \max(0, x_j + \delta)$

Modify μ and ${\boldsymbol\lambda}$ "intelligently" and hope that ${\boldsymbol x}$ converges to something useful!

Idiot crash: Application to quadratic assignment problem linearizations

Model	Rows	Columns	Optimum	Residual	Objective	Error	Time
NUG05	210	225	50.00	$9.4 imes10^{-9}$	50.01	$1.5 imes10^{-4}$	0.04
NUG06	372	486	86.00	$7.8 imes10^{-9}$	86.01	$1.2 imes10^{-4}$	0.11
NUG07	602	931	148.00	$7.9 imes10^{-9}$	148.64	$4.3 imes10^{-3}$	0.25
NUG08	912	1613	203.50	$7.0 imes10^{-9}$	204.41	$4.5 imes10^{-3}$	0.47
NUG12	3192	8856	522.89	$8.8 imes10^{-9}$	523.86	$1.8 imes10^{-3}$	2.58
NUG15	6330	22275	1041.00	$8.9 imes10^{-9}$	1041.38	$3.7 imes10^{-4}$	5.13
NUG20	15240	72600	2182.00	$7.5 imes10^{-9}$	2183.03	$4.7 imes10^{-4}$	14.94
NUG30	52260	379350	4805.00	$1.1 imes 10^{-8}$	4811.41	$1.3 imes10^{-3}$	82.28

- $\bullet~\mbox{Solution}$ of $_{\rm NUG30}$ intractable using simplex or IPM on the same machine
- Idiot crash consistently yields near-optimal solutions

Idiot crash: Performance

For a few problems, notably QAP linearizations, $\pmb{x} o \pmb{x}^c pprox \pmb{x}^*$

- No proof of near-optimality when ${m x}^c pprox {m x}^*$
- Great advanced start for simplex (Clp)

Future aims

- Apply to dual LP to give confidence interval for $\pmb{x}^c pprox \pmb{x}^*$
- Aim to develop more successful algorithms for fast approximate solution of LPs

H and Galabova (2018)

To close

Conclusions

- LP solvers crucial to decision-making
- Classical methods very highly developed
- Look for alternative algorithms for fast (approximate) solution of LPs

Slides:

http://www.maths.ed.ac.uk/hall/Tokyo19

Code:

https://github.com/ERGO-Code/HiGHS

I. L. Galabova and J. A. J. Hall.

A quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems.

Technical Report ERGO-18-009, School of Mathematics, University of Edinburgh, 2018.

I.A. I. Hall and K. I. M. McKinnon

Hyper-sparsity in the revised simplex method and how to exploit it.

Computational Optimization and Applications, 32(3):259-283, December 2005.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method. Mathematical Programming Computation, 10(1):119-142. 2018

M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.

Parallel distributed-memory simplex for large-scale stochastic LP problems.

Computational Optimization and Applications. 55(3):571-596, 2013.

L. Schork and J. Gondzio

Implementation of an interior point method with basis preconditioning.

Technical Report ERGO-18-014, School of Mathematics, University of Edinburgh, 2018,